Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
Radiological assessment due to existing of natural occurring radioactive materials
(NORM) in South Rumaila oil field was achieved in this study. Different samples
including soil, sludge, scale, oil, and water were collected from different stages of
oil and gas production in Markazia Degassing Station (SDS) in South Rumaila oil
field. Radioactivity of Ra-226, Th-232 and K-40 were measured using gamma
spectrometry system based on HPGe detector with efficiency of 30%. The results
show that some locations within SDS are contaminated with NORM. The activity of
Ra-226, Th-232 and K-40 range between 18.4 to 312.8, 9.4 to 140.8 and 66.4 to
800.8 (Bq/kg) respectively. The places to be more contaminated among the other
p
Binary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MoreA method was developed that offers a rapid, simple and accurate technique for the determination of chlorophenols at trace levels in aqueous samples with very limited volumes of organic solvents. These compounds were acetylated, then preliminarily extracted with n-hexane. The enriched chlorophenols were directly analyzed using gas chromatography with an electron-capture detector. The detection limits were in the range of 0.001–0.005 mg/L, except for 2-chlorophenol, which was always above 0.013 mg/L. Relative standard deviation for the spiked water samples ranged from 2.2 to 6.1%, while relative recoveries were in the range of 67.1 to 101.3%.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show MoreExponential Distribution is probably the most important distribution in reliability work. In this paper, estimating the scale parameter of an exponential distribution was proposed through out employing maximum likelihood estimator and probability plot methods for different samples size. Mean square error was implemented as an indicator of performance for assumed several values of the parameter and computer simulation has been carried out to analysis the obtained results
This research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show MoreThe present work included study of the effects of weather conditions such as solar radiation and ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency
... Show More