Preferred Language
Articles
/
mBYvLIcBVTCNdQwCyDsG
Geomechanical modelling and two-way coupling simulation for carbonate gas reservoir
...Show More Authors
Abstract<p>Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Sep 11 2022
Journal Name
Journal Of Petroleum Research And Studies
Distribution of Petrophysical Properties Based on Conceptual Facies Model, Mishrif Reservoir/South of Iraq
...Show More Authors

A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to

... Show More
View Publication
Crossref
Publication Date
Tue Dec 14 2021
Journal Name
Petroleum Science And Technology
Coupled reservoir geomechanics with sand production to minimize the sanding risks in unconsolidated reservoirs
...Show More Authors

Sand production in unconsolidated reservoirs has become a cause of concern for production engineers. Issues with sand production include increased wellbore instability and surface subsidence, plugging of production liners, and potential damage to surface facilities. A field case in southeast Iraq was conducted to predict the critical drawdown pressures (CDDP) at which the well can produce without sanding. A stress and sanding onset models were developed for Zubair reservoir. The results show that sanding risk occurs when rock strength is less than 7,250 psi, and the ratio of shear modulus to the bulk compressibility is less than 0.8 1012 psi2. As the rock strength is increased, the sand free drawdown and depletion becomes larger. The CDDP

... Show More
Crossref (11)
Crossref
Publication Date
Fri Oct 22 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
4D Finite element modeling of stress distribution in depleted reservoir of south Iraq oilfield
...Show More Authors
Abstract<p>The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are</p> ... Show More
View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed May 29 2019
Journal Name
Indian Journal Of Physics
Effect of lasing energy on the structure and optical and gas sensing properties of chromium oxide thin films
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Incremental and acceleration production estimation and their effect on optimization of well infill locations in tight gas reservoirs
...Show More Authors
Abstract<p>The main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainabi</p> ... Show More
View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2010
Journal Name
International Journal Of Communication Networks And Distributed Systems
A novel Radon-based multi-carrier direct sequence code division multiple access transceiver design and simulation
...Show More Authors

Multi-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between the Methods Estimate Nonparametric and Semiparametric Transfer Function Model in Time Series Using Simulation
...Show More Authors

Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
...Show More Authors

Abstract 

     The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Feb 15 2017
Journal Name
Global Journal Of Bio-science And Biotechnology
ISOLATE AND IDENTIFICATION OF PSEUDOMONAS AERUGINOSA FROM CONTAMINATED SOIL WITH HYDROCARBONS DISCHARGED FROM GAS FILLING REFINERIES
...Show More Authors

Petroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates inocula

... Show More
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Fabrication and Characterization of Tri Metal Oxides by Chemical Spray Pyrolysis Technique as a Gas Sensor
...Show More Authors

In this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te

... Show More
View Publication Preview PDF
Crossref (2)
Crossref