Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
يهدف البحث الى تقديم استراتيجية مقترحة لشركة نفط الشمال ، وأخذت الاستراتيجية المقترحة بنظر الاعتبار الظروف البيئية المحيطة واعتمدت في صياغتها على اسس وخطوات علمية تتسم بالشمولية والواقعية ، اذ انها غطت الانشطة الرئيسية في الشركة (نشاط الانتاج والاستكشاف , نشاط التكرير والتصفية , التصدير ونقل النفط , نشاط البحث والتطوير , النشاط المالي , تقنية المعلومات , الموارد البشرية ) وقد اعتمد نموذج (David) في التحليل البيئي
... Show MoreIn this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.
In this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreCopper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Objective: To generate a model that conceptualizes the phenomenon of health promotion and its related factors.
Methodology: A grounded theory methodology is used as qualitative method to explore the health promotion as
phenomenon of interest and its other related factors from the perspectives of specialists in this field. The study is
carried out from January 2002 through September 2004. A sample of (20) specialists in health sciences are
selected and interviewed as experts in the area of health promotion. The investigators conducted intensive and
structured interviews with the specialists to collect the data. These interviews were transcribed verbatim,
analyzed and interpreted.
Results: Findings of the study indicat
Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost
... Show MoreA novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio
... Show More
