Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV
,
(7.55 )
2
1
2
5
MeV
(15.11 )
2
3
2
3
MeV
states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions
This study takes its importance in the area of systemic and historical
studies because it stands on presenting such aspects from the systematic
respect and now Ibn AL-Jouzy dealt with the text of this subject and how he
was exact in telling them.
Therefore, this study sheds light on the important aspects of this
method in his book through reading and studying such texts whether they had
direct or indirect relationship with this subject.
This study is not an easy task since it is based on contriving the
intellectual aspects in the methods of lbn AL-Jouzy and how he deals with the
text of this subject in its hygienic, natural and geographical aspects in
constructing a historical method in most scripts, the gen
Many studies mentioned that there is a decline in the a achievement of intermediate second class students in mathematics . Parents and mathematics teachers had emphasized that . The studies related this decline to the students weak attitude towards mathematics .
In spite of the importance of this subject , it has not been given enough attention in research in our country . This research is an attempt to know th e relationships between the intermediate second class students , attitude and their achievement in mathematics .
Also, to know the statistical sign
... Show MoreSeveral methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re
... Show MoreThe Climatic parameters for the years (1985-2015) were collected from Baghdad
meteorological station and then were applied to evaluate the climatic conditions for
the Al-Yusufyiah area south Baghdad. The total annual rainfall is (119.65 mm),
while the total annual evaporation is (3201.7 mm), relative humidity is (43.62%),
sunshine (8.76 h/day), temperature (23.28 C◦) and wind speed (3.06 m/sec). Climate
of the study area is described as an arid according to classification of (Kettaneh and
Gangopadhyaya, 1974), (Mather, 1973), and (Al-Kubaisi, 2004). Mean monthly
water surplus for the period (1985-2015) was recorded in the study area about (4.7
mm) in November, (11.67 mm) in December, (20.56 mm) in January and (6
In this work , the effect of chlorinated rubber (additive I), zeolite 3A with chlorinated rubber (additive II), zeolite 4A with chlorinated rubber (additiveIII), and zeolite 5A with chlorinated rubber (additive IV), on flammability for epoxy resin studied, in the weight ratios of (2, 4, 7,10 & 12%) by preparing films of (130x130x3) mm in diameters, three standard test methods used to measure the flame retardation which are ; ASTM : D-2863 , ASTM : D-635 & ASTM : D-3014. Results obtained from these tests indicated that all of them are effective and the additive IV has the highest efficiency as a flame retardant.
Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
The rotational model symmetry is a strong feature of 1d shell nuclei, where symmetry breaking spin-orbital force is rather weak. The binding energies and low-lying energy spectra of Mg (A=20,22,28 and 30) even-even isotopes have been calculated. The interaction used contains the monopole-monopole, quadrupole-quadrupole and isospin dependent terms. Interaction parameters are fixed so as to reproduce the binding of 8 nucleons in N=8 orbit for Z=12 isotope.
The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.
We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.
Fin
... Show More