Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
The study area soils suffer from several problems appear as tkhesvat and cracks in the roads and waterlogging which reduces the susceptibility of soil to withstand pressure, this study was conducted on the soil of the Karkh district based on field study that included (6) samples of soil physical analyses contain different ratios of (mud, sand, silt) as percentages (52%, 45%, 3 #) respectively, and liquidity limit rate (39%) Stroke rate plasticity was (20.6%) The rate coefficient of plasticity total (19.2%)0
objectives: To investigate the polyomaviruses (BK, JC) in asymptomatic kidney transplant recipients and healthy persons as control. It is one of the first reports on serological detection and molecular characterization that describes the circulation of polyomaviruses (BKV, JCV) have been done in Iraq recently. Methodology: The present study was designed as prospective case control study was done during the period from November 2015 to August 2016. Total of 97 serum and urine samples were collected randomly from 25 healthy control person and 72 renal transplant recipients, attending Iraqi Renal Transplantatio
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
Psidium guajava, belonging to the Myrtaceae family, thrives in tropical and subtropical regions worldwide. This important tropical fruit finds widespread cultivation in countries like India, Indonesia, Syria, Pakistan, Bangladesh, and South America. Throughout its various parts, including fruits, leaves, and barks, guava boasts a rich reservoir of bioactive compounds that have been traditionally utilized as folkloric herbal medicines, offering numerous therapeutic applications. Within guava, an extensive array of Various compounds with antioxidative properties and phytochemical constituents are present, including essential oils, polysaccharides, minerals, vitamins, enzymes, triterpenoids, alkaloids, steroids, glycosides, tannins, fl
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreThe antibacterial activity of some extracts of A. eupatoria (aqueous and ethanolic) against some pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli ) and their activity on wound healing in rats , also the presence of some active compounds in both extracts were detected . The results showed that the ethanolic extract was more effective on inhibiting tested bacteria than the aqueous extract . P.aeruginosa was the most resistant bacteria, while highest inhibition zone appeared on E.coli (20 mm) .There was a moderate activity against S.aureus with inhibition zone 15 mm. by using ethanolic extract (10 mg/ml) . The phytochemical analysis for detection of active compounds revealed the presence of Carbohydrate
... Show MoreThe cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show MoreLead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show More