Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulation methods which are Mean Monte Carlo Finite difference (MMC_FD) and Mean Latin Hypercube Finite difference (MLH_FD), are also used to solve the proposed epidemic model under study. The obtained results are discussed, tabulated, and represented graphically. Finally, the absolute error is the tool used to compare the numerical simulation solutions from 2020 to 2024 years. The behavior of the Coronavirus in Iraq has been expected for 4 years from 2020 to 2024 using the proposed numerical simulation methods.
The rising temperatures are the most significant aspect in the period of climate variability. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of the present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used in the climate - scenario. The main objective of the study is to prepare maps. The simulated temperature as obtained from climate model-
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreIn this paper, the interplay among four population species is offered. The system consists of two competitive prey, predator and super predators. The application of the hypothesis of the Sotomayor theorem for local bifurcation around every equilibrium point is adopted. It is detected that the transcritical bifurcation could occur near most of the system's equilibrium points, while saddle-node and pitchfork bifurcation can not be accrued at any of them. Further, the conditions that guarantee the accruing Hopf bifurcation are carried out. Finally, some numerical analysis is illustrated to confirm the analytical results.
Removal of Congo red, Rhodamine B, and Dispers Blue dyes from water solution have been achieved using Flint Clay as an adsorbent. The adsorption was studied as a function of contact time, adsorbent dose, pH, and temperature under batch adsorption technique. The equilibrium data fit with Langmuir, Freundlich and Toth models of adsorption and the linear regression coefficient R2 was used to elucidate the best fitting isotherm model. Different thermodynamic parameters, namely Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has been employed for the kinetic measurements and the adsorption of the three dyes follows a second order rate kinetics. The kinetic investigations al
... Show MoreDetermining the aerodynamic characteristics of iced airfoil is an important step in aircraft design. The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil
... Show MoreThe mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show More
Diyala River is one of the important rivers that provide water for the Governorate of Diyala. In this research, the morphology and sediment transport of this river were studied using HEC-Ras software. The selected length of the river in the present study is 193 km and extended from Diyala Weir to the confluence of Tigris River and Diyala River. The fieldwork period extended from June 2020 till August 2020, where suspended-load and bed-load samples were collected and surveyed some cross-sections. The one-dimensional sediment transport model has been calibrated for five years, from 2014 to 2019. The results were compared with the measured cross-sections in 2019, and the suitable value of (maximum depth
... Show MoreThe aim of this investigation was to study the impact of various reaction parameters on wastewater taken from Al-Wathba water treatment plant on Tigris River in south of Baghdad, Iraq with sodium hypochlorite solution. The parameters studied were sodium hypochlorite dose, contact time, initial fecal coliform bacteria concentration, temperature, and pH. In a batch reactor, different concentrations of sodium hypochlorite solution were used to disinfect 1L of water. The amount of hypochlorite ions in disinfected water was measured using an Iodimetry test for different reaction times, whereas the Most Probable Number (MPN) test was used to determine the concentration of coliform bacteria. Total Plate Count (TPC) was utilized in this study to
... Show MoreThis study was conducted to examine the discharge capacity of the reach of the Tigris River between Kut and Amarah Barrages of 250km in length. The examination includes simulation the current capacity of the reach by using HEC-RAS model. 247cross sections surveyed in 2012 were used in the simulation. The model was calibrated using observed discharges of 533, 800, 1025 and 3000m3/s discharged at Kut Barrage during 2013, 1995, 1995 and 1988, respectively, and its related water level at three gauge stations located along the reach. The result of calibration process indicated that the lowest Root Mean Square Error of 0.095 can be obtained when using Manning’s n coefficient of 0.026, 0.03 for th
... Show More