planning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreBackground: Diabetes mellitus is a major risk factor for chronic periodontitis (CP) and hyperglycemia has an important role in the enhancement of the severity of the periodontitis. It has been reported that the progression of CP causes shifting of the balance between bone formation and resorption toward osteoclastic resorption, and this will lead to the release of collagenous bone breakdown products into the local tissues and the systemic circulation. Cross-linked N-telopeptide of type I collagen (NTx) is the amino-terminal peptides of type I collagen which is released during the process of bone resorption. This study was conducted to determine the effects of nonsurgical periodontal therapy on serum level of NTx in type 2 diabetic patients
... Show MoreBackground: Several studies suggested that skeletal system is adversely affected by diabetes and is associated with increased risk of osteoporosis and fragility fractures
Objectives: The study was a case-control study that designed to assess the level of bone turnover markers (BTMs) among patients with type 2 diabetes mellitus (T2DM) and to investigate the effect of body weight and diabetic control on the level of bone turnover
Type of the study: Cross- sectional study.
Methods: The present study included 100 postmenopausal women with type 2 diabetes mellitus. Sixty-six non-diabetic postmenopausal women were enrolled as a control. Fasting b
... Show MoreBackground: Chronic hyperglycemia causes diabetic nephropathy(DN), which is a typical microvascular complication of type 2 diabetes mellitus. The pathogenesis of DN is not fully understanding. The inflammation may possess a significant role in the progression of DN in diabetic patients. Method: The study accomplished at teaching laboratories of medical city, Baghdad, Iraq. It was included 50uncontrolled diabetic type 2 patients with nephropathy, age range (40-78) years and 42 controlled diabetics type 2 without nephropathy, age range (35 - 52) years as a control group. The participants divided in to two groups according to HbA1c measurement which is described as follows: < 7.5% of HbA1c describes controlled diabetes, and > 9% of HbA1c
... Show MoreCombination therapy with a dipeptidyl peptidase–4 inhibitor and metformin or metformin+ glibenclamide results in substantial and additive glucose- lowering effects in Iraqis patients with type 2 diabetes mellitus . This study evaluated the glycemic control by using two groups of combinations of drugs metformin + glibenclamide and metformin + sitagliptin in Baghdad teaching hospital / medical city. 68 T2DM patients and 34 normal healthy individuals as control group were enrolled in this study and categorized in to two treatment groups. The group 1 (34 patients ) received ( metformin 500 mg three times daily + glibenclamide 5 mg twice daily ) and the group 2 (34 patients) received (metformin 500 mg three times daily + sitaglip
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreBall and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreLogic in the philosophy of ethical behavior in business organizations