We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.
Optical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThis study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases. Medical images of different cases of kidney diseases were compared with those of healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected
... Show MoreThe magnetic dipole moments and the root mean square radius have been calculated some the Fluorine (A= 17, 19, 20, 21) isotopes based on the sd-shell model using universal sd-shell interaction A (USDA). All studied isotopes are composed of 16O nucleus that is considered as an inert core and the other valence particles are moving over the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits. The configuration of mixing shell model with limiting number of orbitals in the model space outside the inert core fail to reproduce the measured magnetic dipole moments. Therefore, and for the purpose of enhancing the calculations, the discarded space has been included the core polarization effect through the effective g-factors. The harmonic os
... Show MoreBackground: Recent advancements in molecular techniques have identified over 450 genotypes of Human Papillomavirus (HPV), classified into low- and high-oncogenic risk categories. The rise in high-oncogenic risk HPV genotypes has been linked to various cancers, including those affecting the oral, oropharyngeal, and nasopharyngeal regions in both pediatric and adult populations. Methods: In this study, a cohort of 102 tonsillar tissue samples was included. This comprised 40 specimens from pediatric patients aged 4 to 9 years with nasopharyngeal adenoid hypertrophies, and 42 specimens from pediatric patients aged 5 to 12 years with palatine tonsillar hypertrophies. Among the 82 tonsillar tissue samples analyzed, 38 were from pediatric patients
... Show MoreThis article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
This piece of research work aims to study one of the most difficult reaction and determination due to continuous and rapid variation of reaction products and the reactants. As molybdenum (VI) aid in the decomposition of hydrogen peroxide in alkaline medium of ammomia, thus means a continuous liberation of oxygen which cuases and in a continuous manner a distraction in the measurement process. On this basis pyrogallol was used to absorbe all liberated oxygen and the result is an a clean undisturbed signals. Molybdenum (VI) was determined in the range of 4-100 ?g.ml-1 with percentage linearity of 99.8% or (4-300 ?g.ml-1 with 94.4%) while L.O.D. was 3.5 ?g.ml-1. Interferring ions (cations and anions) were studied and their main effect was red
... Show MoreCeftriaxone sodium were one of the widely antibacterial drugs used. Azo dye derivatization of diazonium salt that formed via the reaction between ceftriaxone with hydrochloric acid and sodium nitrite was developed for the on-research drug analysis then coupling with each one 2,5-dimethylphenol (2,5-DMP) and 4-tertbutylphenol (4-TBP) respectively in the alkaline media. The developed diazonium coupling methods include an optimization study. The results show a limit of detection and limit of quantification 0.482, 0.284 µg/mL, and 1.607, 0.945 µg/mL using 2,5-DMP and 4-TBP reagents respectively. Moreover, the recovery % obtained was 100.89%, and 103.37% at linear concentration range 3.0 – 50, and 10 – 30 µg/mL, with mo
... Show Morenew, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show More