We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.
Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreWA Shukur, journal of the college of basic education, 2011 The aim of this research is designing and implementing proposed steganographic method. The proposed steganographic method don’t use a specific type of digital media as a cover but it can use all types of digital media such as audio, all types of images, video and all types of files as a cover with the same of security, accuracy and quality of original data, considering that the size of embedded data must be smaller than the size of a cover. The proposed steganographic method hides embedded data at digital media without any changing and affecting the quality of the cover data. This means, the difference rate between cover before hiding operation and stego is zero. The proposed steg
... Show MoreThe present study aims at identifying the styles, procedures of Iraqi universities to avoid plagiarism and evaluate these steps, also to evaluate the form prepared by the Directory of Scientific Supervision and Evaluation, Ministry of Higher Education and Scientific Research. The study uses documentary style, 150 teachers in the following colleges (Education Ibn Rushd, Languages and Arts) in university of Baghdad whom already used the aforementioned list were the sample of the study and they asked to give their opinions about the list.The study consists of five sections, first one deals with general view, second explains plagiarism and its types, shapes and reasons,third tackles with ways of detecting plagiarism, its programs, consequences
... Show More