We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). Standard Deviation, Mean, Energy and Entropy are extorted using the histogram approach for each merger space. These features are found to be higher in occurrence in the tumor region than the non-tumor one. MRI scans of the five brains with 60 slices from each are utilized for testing the proposed method’s authenticity. These brain images (230 slices as normal and 70 abnormal) are accessed from the Internet Brain Segmentation Repository (IBSR) dataset. 60% images for training and 40% for testing phase are used. Average classification accuracy as much as 98.02% (training) and 98.19% (testing) are achieved.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered i
... Show MoreIn this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer) and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm), electrical current density (2.67-21.4 mA/cm2), init
... Show MoreBackground: Measuring implant stability is an important issue in predicting treatment success. Dental implant stability is usually measured through resonance frequency analysis (RFA). Osstell® RFA devices can be used with transducers (Smartpeg™) that correspond to the implants used as well as with transducers designed for application with Penguin® RFA devices (Multipeg™). Aims: This study aims to assess the reliability of a MultiPeg™ transducer with an Osstell® device in measuring dental implant stability. Materials and Methods: Sixteen healthy participants who required dental implant treatment were enrolled in this study. Implant stability was measured by using an Osstell® device with two transducers, namely, Smartpeg™ and M
... Show MoreIntroduction The abortions reasons in several circumstances yet are mysterious, nevertheless the bacterial toxicities signify a main reason in abortion, where germs seems to be the utmost elaborate pathogens (Khameneh et.al., 2014) and (Oliver and Overton ,2014). Between numerous germs, Humano
Background Over the past decade there has been a growing awareness of, and interest in, the trace element concentration differences between normal and diseased tissues. Significant changes in tissue concentrations of Zinc (Zn) and Copper (Cu) have been previously reported in inflammation and cancer of certain human tissues.
Aim:(1)To correlate between Zn and Cu concentrations and the histological picture of normal and certain inflamed human tissues, namely the gall bladder (GB) the vermiform appendix (VA), visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). (2) to detect whether there is a difference in the above-mentioned parameters between VAT and SAT. (3) to obtain recordings for trace element levels in human tissu
* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2