Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though the Lyapunov methods are applied. There has to find a positive definite Lyapunov function, and its derivative function has to be negative definite. A new approach had been tested in several …
This research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
In this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
The research aims to identify the factors that affect the quality of the product by using the Failure Mode and Effect Analysis (FMEA) tool and to suggest measures to reduce the deviations or defects in the production process. I used the case study approach to reach its goals, and the air filter product line was chosen in the air filters factory of Al-Zawraa General Company. The research sample was due to the emergence of many defects of different impact and the continuing demand for the product. I collected data and information from the factory records for two years (2018-2019) and used a scheme Pareto Fishbone Diagram as well as an FMEA tool to analyze data and generate results.
Par
... Show MoreAbstract
The nuclear structure of 28-40Si isotopes toward neutron dripline has been investigated in framework of shell model with Skyrme-Hrtree-Fock method using certain Skyrme parameterizations. Moreover, investigations of static properties such as nuclear densities for proton, neutron, mass, and, charge densities with their corresponding rms radii, neutron skin thicknesses, binding energies, separation energies, shell gap, and pairing gap have been performed using the most recent Skyrme parameterization. The calculated results have been compared with available experimental data to identify which of these parameterizations introduced equivalent results with the ex
... Show MoreThe research discusses the need to find the innovative structures and methodologies for developing Human Capital (HC) in Iraqi Universities. One of the most important of these structures is Communities of Practice (CoPs) which contributes to develop HC by using learning, teaching and training through the conversion speed of knowledge and creativity into practice. This research has been used the comparative approach through employing the methodology of Data Envelopment Analysis (DEA) by using (Excel 2010 - Solver) as a field evidence to prove the role of CoPs in developing HC. In light of the given information, a researcher adopted on an archived preliminary data about (23) colleges at Mosul University as a deliberate sample for t
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn the present research, the nuclear deformation of the Ne, Mg, Si, S, Ar, and Kr even–even isotopes has been investigated within the framework of Hartree–Fock–Bogoliubov method and SLy4 Skyrme parameterization. In particular, the deform shapes of the effect of nucleons collective motion by coupling between the single-particle motion and the potential surface have been studied. Furthermore, binding energy, the single-particle nuclear density distributions, the corresponding nuclear radii, and quadrupole deformation parameter have been also calculated and compared with the available experimental data. From the outcome of our investigation, it is possible to conclude that the deforming effects cannot be neglected in a characterization o
... Show More