Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.
In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreThe shortage in surface water quantities led to a shift in dependence on the groundwater as an alternative water source in southern parts of Iraq. The groundwater is decreasing in quantity and water quality is degrading due to different factors. Therefore, it is important to assess the groundwater quality of the Missan Governorate of the country by analyzing the physicochemical parameters and distinguishing the probable sources of contaminants in the area. The present study used water quality diagrams and statistical methods such as factor analysis and agglomerative cluster analysis to determine the sources of chemical ions in the forty-four groundwater samples collected from wells in the study area. In addition, the Water Quality Index (WQ
... Show MoreThe need for detection and investigation of the causes of pollution of the marshes and submit a statistical study evaluated accurately and submitted to the competent authorities and to achieve this goal was used to analyze the factorial analysis and then obtained the results from this analysis from a sample selected from marsh water pollutants which they were: (Electrical Conductivity: EC, Power of Hydrogen: PH, Temperature: T, Turbidity: TU, Total Dissolved Solids: TDS, Dissolved Oxygen: DO). The size of sample (44) sites has been withdrawn and examined in the laboratories of the Iraqi Ministry of Environment. By illustrating SPSS program) the results had been obtained. The most important recommendation was to increase the pumping of addit
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned
... Show MoreInvestigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show MoreThe current paper aims at knowing the effect of Exemplar of Wettli On Acquiring Grammatical Concepts Among Basic 7th Class Female Students in Kurdish Language Grammar.
The current paper is confined to a sample of Basic 7th Class Female Students- Khaniqin –belonged Morning schools for the academic year 2014-2015 . The sample amounted 50 female students distributed on two sections ( A,B) . Section A represented experimental group ( 24) female students studied according to the exemplar of ( Wettli) and (B) represented control group (26) female students who have studied with traditional method. The researcher has qualified between these two groups b
... Show MoreThe study consisted in the development and use of a practical method to detect and
monitor, analyze and produce maps of changes in land use and land cover in the district of
Mahmudiya in Baghdad during the period 1990-2007 using the applications of remote sensing
techniques and with the assisstant of geographic information systems (GIS),as a valuable
contribution to land degradation studies.
This study is based maiuly on the processing on two subsets of landsat5 TM images picked up
in August 1990 and 2007 respectively in order to facilitate comparision and were thengeometrically and radiometrcally calibrated ,to used for digital classification purposes using
maximum liklihoods classification or six spectral bands of
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.