Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.
Abstract The current study is a theoretical study that aims to underline the role of picture books as a serious genre of children's literature in raising children's understanding of English literature and life concepts; especially for non-English speakers. Unfortunately, most Iraqi people have developed a social phobia of learning English since childhood. This phobia is resulted from the heavy traditional reading and writing assignments as well as hard exams. Therefore, this study suggests incorporating more interesting literary material like picture books that would bring pleasure and help in raising children's love and cognition of English Language. More significantly, it calls to replace the old curriculum with a more vital
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreAssume that is a meromorphic fuction of degree n where X is compact Riemann surface of genus g. The meromorphic function gives a branched cover of the compact Riemann surface X. Classes of such covers are in one to one correspondence with conjugacy classes of r-tuples ( of permutations in the symmetric group , in which and s generate a transitive subgroup G of This work is a contribution to the classification of all primitive groups of degree 7, where X is of genus one.
Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreThe research aims at identifyiny the effect of (Danials Model) in concepts Acquisition of Education Principles on Students at college at Education The total unmber of Students , is (65) male and female Students distributed in two groups . The First group is the experiemental group which is taught the (Danials Model) and is (34) Students . The second groupe is the control group which is taught the traditional method of teaching and it is (31) Students . The researcher has matcheol between the two groupe by the following variables : the age , (in monthes) their intelligence their parents a cademic leve of education . The research has constructed a test of (20) items of multiple choice test . The reliability of The test has been cal
... Show MoreThe scientific studies that deal with Herminutia (interpretation) as the art of reading the interpretation practiced by the recipient after his understanding of the literary texts and works of art that he sees or read them so that these readings to make the act of reading and allow him the opportunity to mature and rational reflection of each text or artistic work.
Based on this, the researchers considered the establishment of the problem of their research through the search for the problematic overlap of concepts in the interpretive practices of the literary text?
The second chapter dealt with the definition of the term interpretation as well as interpretation as a theory and concept, and then the indicators reached by t
... Show MoreThe study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu
... Show More