Preferred Language
Articles
/
lxdrYI8BVTCNdQwCt3RK
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
A study Some Technical Indicators of the Local Designed Machine
...Show More Authors
Abstract<p>The effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr<sup>-1</sup>) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr<sup>-1</sup> practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr<sup>-1</sup>. mechanical parameters, plant growth parameters and yield and growth parameters. The 1</p> ... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo</p> ... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Oct 10 2019
Journal Name
Plant Archives
A study of qualitative, classification soil algae in some areas from Baghdad, Iraq
...Show More Authors

A study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize

... Show More
Scopus (1)
Scopus
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Classification of Optical Images of Cervical Lymph Node Cells
...Show More Authors
Abstract<p>the study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Thu Mar 29 2018
Journal Name
Construction Research Congress 2018
Consideration of Worker Safety in the Design Process: A Statistical-Based Approach Using Analysis of Variance (ANOVA)
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Classical and Statistical Optimization of Medium Composition for Promoting Prodigiosin Produced by Local Isolate of Serratia Marcescens
...Show More Authors

Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis Using Spectral and Statistical Analysis of Cough Recordings Based on the Combination of SVD and DWT
...Show More Authors

Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 16 2020
Journal Name
Al-kindy College Medical Journal
The importance of anatomical zonal classification in the early management of penetrating neck injuries
...Show More Authors

Background: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
...Show More Authors

The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.

Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.

The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.

In the analysis of d

... Show More
View Publication Preview PDF
Crossref