Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.
Suppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreUrban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between t
... Show MoreHS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020
This research aimed to definite Blending learning (BL) technique, and to know the impact of its use onacademic achievement in Biology course of second class students in secondary special schools in Omdurman Locality and attitudes towards it, to achieve this; researcher adopted the experimental method. The sample was selected of (41) students, chosen from Atabiyah school, were divided into two equals groups: one experimental group reached (26) students studied by using the BL technique, and the second control group (25) students have been taught in the traditional method.
Data has collected by using two tools: achievement test and a questionnaire for measuring the attitudes towards Blend
... Show MoreThe current study aims at identifying the impact of using learning acceleration model on the achievement of mathematics for third intermediategrade students. Forachieving this, the researchers chose the School (Al-Kholood Secondary School for Girls) affiliated to the General Directorate of Babylon Education / Hashemite Education Department for the academic year (2021/2021), The sample reached to (70) female students from the third intermediate grade, with (35) female students for each of the two research groups. The two researchers prepared an achievement test consisting of (25) objective items of multiple choice type, The psychometric properties of the test were confirmed, and after the completion of the experiment, the achievement test wa
... Show MoreAbstract
The current research aims at identifying any of the dimensions of organizational learning abilities that are more influential in the knowledge capital of the university and the extent to which they can be applied effectively at Wasit University. The current research dealt with organizational learning abilities as an explanatory variable in four dimensions (Experimentation and openness, sharing and transfer of knowledge, dialogue, interaction with the external environment ), and knowledge capital as a transient variable, with four dimensions (human capital, structural capital, client capital, operational capital). The problem of research is the following questio
... Show More