Preferred Language
Articles
/
lxZizIsBVTCNdQwCXN8l
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE
...Show More Authors

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid estimation of Copper.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and

... Show More
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
Using Persistence Barcode to Show the Impact of Data Complexity on the Neural Network Architecture
...Show More Authors

    It is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing  mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Surface Contamination and Dose Rate Verification of Fertilizers common in Iraqi Plantations using RadEye B20 Detector
...Show More Authors

Twenty three samples of granular chemical fertilizers and organic fertilizers commonly utilized in Iraqi ranches were collected. The samples were prepaid and stored in a Marinelli beaker to measure; dose rate, general count rate and surface contamination of the samples using the RadEye B20 detector, firstly with shield, secondly without the shield to estimate the effect of shielding on the measurements. The results showed that using shield made a significant decrease in the radiation measurements reached about 25%. However the mean value of surface contamination, dose rate and general count rate with shield were 0.54Bq/cm2, 0.65µsv/h, and 0.28Cps respectively, and without shield being 0.34Bq/cm2, 1.33µsv/h, and 1.52Cps respectively

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fully Automated Magnetic Resonance Detection and Segmentation of Brain using Convolutional Neural Network
...Show More Authors

     The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Mon Mar 06 2023
Journal Name
Environmental Monitoring And Assessment
Copper metal elimination from polluted soil by electro-kinetic technique
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Trace Metal Contamination in Soils and Waters around the Abandoned Colliery Site of Bagworth Heath, English Midlands
...Show More Authors

Abandoned mines and mining activities are considered one of the most significant sources of trace metal contamination worldwide. Those activities resulted in environmental contamination of particular surrounding ecosystems of abandoned ecosystems. The main aim of this study is to evaluate the trace metal contamination in the vicinity of abandoned mine located in Leicestershire English Midland. Twelve soil samples with two water samples were collected from the abandoned mine site. Test results showed a wide range of soil pH was observed from extremely acid (2.5) to slightly alkaline (7.4) as well as LOI from 8% organic matter content to 40% was found. Moreover, results demonstrated that most elements were below Soil Guideline Values (SGV)

... Show More
View Publication Preview PDF