The electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreCu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two
The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreThe influence of sintering and annealing temperatures on the structural, surface morphology, and optical properties of Ag2Cu2O4 thin films which deposited on glass substrates by pulsed laser deposition method have been studied. Ag2Cu2O4 powders have polycrystalline structure, and the Ag2Cu2O4 phase was appear as low intensity peak at 35.57o which correspond the reflection from (110) plane. Scan electron microscopy images of Ag2Cu2O4 powder has been showed agglomerate of oxide particles with platelets shape. The structure of thin films has been improved with annealing temperature. Atomic Force micrographs of Ag2Cu2O4 films showed uniform, homogenous films and the shape of grains was almost spherical and larger grain size of 97.85 nm has o
... Show MoreThin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms