Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0-0.05 wt. %) was assessed through contact angle measurements. Results from the experiments showed ZrO2 nanofluid have great potentials in changing oil-wet limestone towards strongly water-wet condition. The best performance was observed at 0.05wt% ZrO2 nanoparticle concentration which changed an originally strongly oil-wet (152°) calcite substrate towards a strongly water-wet (44°) state thus we conclude that ZrO2 is a good agent for enhanced oil recovery.
Mishrif Formation is the main reservoir in Amara Oil Field. It is divided into three units (MA, TZ1, and MB12). Geological model is important to build reservoir model that was built by Petrel -2009. FZI method was used to determine relationship between porosity and permeability for core data and permeability values for the uncored interval for Mishrif formation. A reservoir simulation model was adopted in this study using Eclipse 100. In this model, production history matching executed by production data for (AM1, AM4) wells since 2001 to 2015. Four different prediction cases have been suggested in the future performance of Mishrif reservoir for ten years extending from June 2015 to June 2025. The comparison has been mad
... Show MoreA .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreSol-gel derived CuCo-oxide coatings as solar selective surfaces, synthesized onto aluminium substrates at various annealing temperatures, are analysed by correlating their structural, chemical bonding states, and surface morphological topographies. As the annealing progressed, all the coatings displayed a Cu0.56Co2.44O4 (ICSD 78-2175) phase with preferential orientation along (400) reflection plane. Rietveld refinement of X-ray diffraction (XRD) data indicate that residual stress and microstrains developed around the coating surfaces are reduced resulting in mechanically stable thin films. Enhancement of the crystallite size and preferred orientation of the surface were confirmed via XRD, field emission scanning electron microscopy (FESEM),
... Show More|
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
The extract of fig fruit has shown significant medical usefulness in various fields. The entrance of nanotechnology into the field of medicinal and pharmacology has shown remarkable advantages. Plants contain diverse molecules thatcan reduce metals, and provide a safe, eco-friendly approach for synthesizing nanoparticles. Iron oxide nanoparticles (IONPs) have been reported to possess an antimicrobial effect against some strains of bacteria and moulds. We have aimed to synthesize IONPs from fig fruit extract and investigate the influence of fig extract and IONPs in wound healing of mice. UV-Vis spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy were used to characterize the IONPs that were produced
... Show MoreVisceral leishmaniasis is a neglected tropical disease on the rise in different regions of Iraq, especially in areas with poor hygiene and among refugee populations. The effectiveness of existing chemotherapy for leishmaniasis is constrained by its high toxicity, cost, and the development of drug resistance. The current research examined various concentrations (ranging from 125 to 1000 μM) of lupeol to evaluate its ability to boost the generation of nitric oxide, which has anti-leishmanial properties, in an ex-vivo macrophage model. Griess assay was used to detect the nitric oxide (NO) production in Leishmania donovani infected U937 cell-line macrophages along 24 and 48 hours post treated. The nitric oxide concentration was signifi
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.