Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0-0.05 wt. %) was assessed through contact angle measurements. Results from the experiments showed ZrO2 nanofluid have great potentials in changing oil-wet limestone towards strongly water-wet condition. The best performance was observed at 0.05wt% ZrO2 nanoparticle concentration which changed an originally strongly oil-wet (152°) calcite substrate towards a strongly water-wet (44°) state thus we conclude that ZrO2 is a good agent for enhanced oil recovery.
The research deals with the important and modern two subjects, strategic leadership which have six demotions and knowledge management
(four demotions') . the gools & the research is to know the relation & the effect them in the oil ministry (project department) , the sample was (50) persons who works in the department the questionnaire was the tool of data gathering .
The research divided to four parties, the first to the theotical review of the research variables, the second to the research methrology, the third to analysis and discoed the empirical results the last to the conclusions and recommendations .
We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here, the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work, the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test suite is performed by selecting only mutant killing test cases from cumulating t-way test ca
... Show MoreAbstract
Objective: the idea of this study to improve transdermal permeability of Methotrexate using eucalyptus oil, olive oil and peppermint oil as enhancers.
Method: eucalyptus oil (2% and 4%), peppermint oil (2% and 4%) and olive oil (2% and 4%) all used as natural enhancers to develop transdermal permeability of Methotrexate via gel formulation. The gel was subjected to many physiochemical properties tests. In-vitro release and permeability studies for the drug were done by Franz cell diffusion across synthetic membrane, kinetic model was studied via korsmeyer- peppas equation.
Result: the results demonstrate that safe, nonirritant or cause necrosis to rats' skin and stable till 60 days gel was successfully formulated.<
This research aims at calculating the optimum cutting condition for various types of machining methods, assisted by computers, (the computer program in this research is designed to solve linear programs; the program is written in v. basic language). The program obtains the results automatically, this occur through entering the preliminary information about the work piece and the operating condition, the program makes the calculation actually by solving a group of experimental relations, depending on the type of machining method (turning, milling, drilling). The program was transferred to package and group of windows to facilitate the use; it will automatically print the initial input and optimal solution, and thus reduce the effort and t
... Show MoreThis study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreThis study investigates the elimination of chemical oxygen demand (COD) from an Iraqi petroleum refinery effluent through a combined electro‐Fenton and adsorption process (EF+AC). Response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of FeSO 4 concentration, current density, and electrolysis time on the reduction of COD using the EF technique. According to the results of the analysis of variance (ANOVA) for the EF technique, FeSO 4 concentrations, with a contribution of 40.06%, and cur
The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit