Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the overlay (40, 50, and 60 mm), temperature (20, 30, and 40 °C), mix type (reference mix and mix modified with 10% chopped fibers by weight of asphalt cement), and the inclusion of geotextile fabric at two positions (one-third of the depth from the base and at the bottom). The research outcomes revealed that a decreased temperature and thicker overlay led to a higher resistance to crack initiation and full propagation, as indicated by the values of critical fracture energy (Gc) and crack progression rate (CPR). Furthermore, the study observed the enhanced crack resistance of overlays in the presence of geotextiles, whether at the bottom or one-third of the depth from the bottom, with superior performance of the former. Despite a slight enhancement in certain properties, the incorporation of chopped fibers in the overlays did not substantially improve the overall performance compared to the reference specimens. Overall, the study provides valuable insights into the variables that influence the ability of AC overlays to mitigate reflection cracking. These findings will aid engineers and designers in making informed decisions regarding overlay design and construction.
This study aimed to determine the measurements and classification of Schneider membrane thickness correlated to age and sex factors using cone beam computed tomography (CBCT). Methods: The study included CBCT images for 100 maxillary sinuses of 50 consecutive patients, and the thickness of the maxillary sinus membrane (Schneiderian membrane) was measured in coronal view from the lowest point in the floor of the maxillary sinus to the highest point. The thickness of the Schneiderian membrane was classified into 4 types. Results: The study result revealed that out of the total cases, 45% of sinus membranes were classified as type 2, while only 10% were classified as type 4. The most frequent type of membrane thickness diagnosed in the age gro
... Show MoreFlexible pavement design and analysis were carried out in the past with semi-experimental methods, using elastic characteristics of pavement layers. Due to the complex interferences between various layers and their time consumption, the traditional pavement analysis, and design methods were replaced with fast and powerful methods including the Finite Element Method (FEM) and the Discrete Element Method (DEM). FEM requires less computational power and is more appropriate for continuous environments. In this study, flexible pavement consisting of 5 layers (surface, binder, base, subbase, and subgrade) had been analyzed using FEM. The ABAQUS (6.14-2) software had been utilized to investigate the influence of the base layer depth on ver
... Show MoreZinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreThe significance of the research conducted in northern Iraq comes despite the expansion of afforestation projects; yet, the suffering of the forests has increased due to their lack of scientific study, unpredictability of the climate, and adverse effects on the spread and growth of plant species Therefore, the goal of the study is to understand the effects of afforestation through a statistical analysis of plant diversity in northern Iraq and its distinctivenessThe analysis revealed that natural groupings had improved qualitatively more than other groups, particularly some dwindling species that are able to compete and occupy new areas. drought-prone vegetation, vegetation, and climat
In this work, a comparative analysis for the behavior and pattern of the variations of the IF2 and T Ionospheric indices was conducted for the minimum and maximum years of solar cycles 23 and 24. Also, the correlative relationship between the two ionospheric indices was examined for the seasonal periods spanning from August 1996 to November 2008 for solar cycle 23 and from December 2008 to November 2019 for solar cycle 24. Statistical calculations were performed to compare predicted values with observed values for the selected indices during the tested timeframes. The study's findings revealed that the behavior of the examined indices exhibited almost similar variations throughout the studied timeframe. The seasonal variations were
... Show MoreIn the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show MoreThis research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement. Consequently, HSNA can serve as an
... Show MoreThis research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.
Consequently, HS
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show More