Used vegetable oil was introduced to transesterfication reaction to produce Biodiesel fuel suitable for diesel engines. Method of production was consisted of filtration, transesterfication, separation and washing. Transesterfication was studied extensively with different operating conditions, temperature range (35-80o C), catalyst concentration (0.5-2 wt. % based on oil), mixing time (30-120 min.) with constant oil/methanol weight ratio 5:1 and mixing speed 1300 rpm. The concentration of Fatty acid methyl esters (Biodiesel) was determined for the transesterficated oil samples, besides of some important physical properties such as specific gravity, viscosity, pour point and flash point. The behavior of methyl esters production and the physical properties of Biodiesel were studied with the different operating conditions. The results show that increasing methyl esters concentration with increasing temperature and catalyst concentration and the transesterfication is a second order reaction The research aiming to recycle spent cooking oils to prevent pollution of soil and water, and converting them to Biodiesel fuel with low emissions.
Bacteria strain H7, which produces flocculating substances, was isolated from the soil of corn field at the College of Agriculture in Abu-Ghrib/Iraq, and identified as Bacillus subtilis by its biochemical /physiological characteristics. The biochemical analysis of the partially purified bioflocculant revealed that it was a proteoglycan composed of 93.2 % carbohydrate and 6.1 % protein. The effects of bioflocculant dosage, temperature, pH, and different salts on the flocculation activity were evaluated. The maximum flocculation activity was observed at an optimum bioflocculant dosage of 0.2 mL /10 mL (49.6%). The bioflocculant had strong thermal stability within the range of 30-80 °C, and the flocculating activity was over 50 %. The biofloc
... Show MoreIn this work, electrodialysis (ED) has been demonstrated to be appropriate technique for reducing the electrical conductivity of real wastewater from fuel washing unit, which has been previously treated by other electrochemical technology (electrocoagulation and electrooxidation). A five cell electrodialysis stack, with an active membrane area of 60 cm2 per cell was employed. During a batch recirculation mode ED system, the effects of parameters such as electrical potential applied (6-18 V) and flow rate of streams (0.5-1.7 L/min.) on the performance of the total dissolved solids (TDS) separation and specific power consumption (SPC) were studied. The results indicate that the process of ED under potential (15 V) and flow
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show MoreA many risk challenge in (settings hospital) are multi- bacteria are antibiotic-resistant. Some type strains that ability adhesion surface-attached bio-film census. Fifteen MRSA isolates were considered as high biofilm producers Moreover all MRSA isolates; M3, M5, M7 and M11 produced biofilms but the thickest biofilm seen M7strain. The MIC values of N. sativa oil against clinical isolates of MRSA were between (0.25, 0.5, 0.75, 1.0) μg/ml While MRSAcin (50, 75, 100, 125) µg\ ml. All biofilms treated with MRSAcin and Nigella sativa developed a presence of live cells after cultured on plate agar with inhibition zone between MIC (18 – 15) and (14- 11)mm respectively.Yet, results showed that MRSA supernatant developed a inhibitory ef
... Show MoreThis study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreSaccharomyces Cerevisiae cells were immobilized in calcium alginate beads and activated charcoal for use in the
production of ethanol from batch fermentation of sugar beet waste. Treatment of the waste with NaOH to increase the
ability of lignocellulose material to hydrolysis by acid (2N H2SO4) to monosaccharide and disaccharide (mainly glucos).
The high reducing sugar concentration obtained was equal to 9.2gm/100ml (10Brix) after treatment. Fermentation
parameters, are (pH, glucose concentration (2.5-25 gm/100ml), immobilized agent concentration (2.5-25 gm/100ml)
were studied to find the optimum physiological condition. And the highest ethanol concentration obtained from the
fermentation in the presence of 20%(wt/v) ca
Bacteria could produce bacterial nanocellulose through a procedure steps: polymerization and crystallization, that occur in the cytoplasm of the bacteria, the residues of glucose polymerize to (β-1,4) lineal glucan chains that produced from bacterial cell extracellularly, these lineal glucan are converted to microfbrils, after that these microfbrils collected together to shape very pure three dimensional pored net. It could be obtained a pure cellulose that created by some M.O, from the one of the active producer organism like Acetic acid bacteria (AAB), that it is a gram -ve, motile and live in aerobic condition. The bacterial nanocellulose (BNC) have great consideration in many fields because of its flexible properties, features
... Show More