Preferred Language
Articles
/
lhaTtIcBVTCNdQwCvlzp
Studying some of mechanical properties (tensile, impact, hardness) and thermal conductivity of polymer blend reinforce by magnesium oxide

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Apr 03 2023
Journal Name
Polymer Composites
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Preparation and studying of some properties of polymer composites reinforced with natural and artificial fibers

This work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Reinforcing and Temperature Effect of Impact Strength for Polymer Blend

This research prepared polymer blend contains from epoxy resin (Ep) and polyurethane
)Pu) as a matrix material of percentage (90 %) from epoxy and ) 10 (% polyurethane and
reinforced by PVC fibers and aluminum fibers two dimension knitted mat with fractional
volume(15 %), and study impact strength before and after reinforcing at temperatures of
(20,40,60(
o
CØŒand the results have shown that the reinforcing matrix materials by fibers
increased impact strength values that rise from(3.387kJ/m2) to (151.62kJ/m2) of composite
material (Ep+Pu+PVC(and thus ) Ep+Pu+PVC+Al.F) at last (Ep+Pu+Al.F (. following
composite material so that temperatures increase led to rise impact strength values except the
polymer

... Show More
View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Studied Some of the Thermal and Electrical Properties for Particulat Polymer Composites

  This researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing  with the  polymer.  It studied Thermal conductivity and Dielectric strength for both of  the Alkyd resin and  the Composite Material.        The result showed an  increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was  increased by adding the Iraqi Burn Kaolin .

View Publication Preview PDF
Publication Date
Sat Jun 04 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
Crossref (6)
Crossref
View Publication
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
The effect of Aluminum Oxide, Iron Oxide on the thermal conductivity of (Epoxy-Aluminum Oxide, Epoxy-Iron Oxide) Composites

Thermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3

View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Studying of Some Mechanical Properties of Reactive Powder Concrete Using Local Materials

This research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59%  have been achieved for reinforced RPC contains  910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Mechanical properties of epoxy-polyurethane polymer blends

Configured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates

View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Effect of Adding Coumarin Dye on Physical Properties of Blend (PC-PS) Film: Dye doped Blend polymer

Pure blend (PC-PS) and doped blend films with various volume ratio of Coumarin dye were prepared by using casting method. The absorption and transmission spectra for these films were measured using UV/VIS spectrometer technique in order to assessment the type of transition which was found to be indirect transition. The optical energy gap of pure PC was (4.24) eV, pure PS was (4.39) eV, Coumarin dye was (4.08) eV, and pure blend was (4.1) eV. After doping blend with Coumarin dye; the energy gap decreases by (0.06) eV in volume ratio (12) ml. The results showed that absorption coefficient and refractive index affects by doping. When adding the Coumarin dye to the pure blend with different concentrations (12, 24, 36, and 48) ml, the FTIR sp

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Preparation of Unsaturated Polyester Nanocomposites and Studying Their Mechanical Properties Using some Inorganic Additives

In this study three inorganic nano additives, namely; CaCO3, Al2O3 and SiO2 were used to prepare nanocomposites of unsaturated polyester in order to modify their mechanical properties, i.e. tensile strength, elongation, impact and hardness. The results indicated that all the three additives were effective to improve the mechanical properties up to 4% by weight. The effectiveness of them follows the order : CaCO3 > Al2O3 > SiO2 This is due to their particle size in which CaCO3 (13nm), Al2O3 (20-30nm) and SiO2 (15-20nm).

Crossref
View Publication Preview PDF