Preferred Language
Articles
/
lhZPSIcBVTCNdQwC1UFd
Production of Light Weight Foam Concrete with Sustainable Materials
...Show More Authors

Most of the recent works related to the construction industry in Iraq are focused on investigating the validity of local raw materials as alternatives to the imported materials necessary for some practical applications, especially in thermal and sound insulation. This investigation includes the use of limestone dust as partial substitution of cement in combination with foam agent and silica fume to produce sustainable Lightweight Foam Concrete (LWFC). This study consists of two stages. In the first stage, trial mixes were performed to find the optimum dosage of foam agent. Limestone dust was used as a partial replacement for cement. Chemical analysis and fineness showed great similarity with cement. Many concrete mixes were prepared with the content of lime dust powder being 10%, 14%, and 18% as partial replacement of cement by weight. The results indicate that the compressive strength at 7, 28, and 90 days of age was increased for specimens with 14% limestone dust. The best results in compressive strength show an increase at 7 days and a decrease at 28 and 90 days for concrete specimens with 14% limestone dust. In addition, the results show a decrease in dry density for concrete containing 14% lime dust. In the second stage, different percentages of Polypropylene Fibers were added to the concrete, all mixes, containing a constant content of limestone dust of 14% by weight of cement, were modified using different percentages of Polypropylene Fibers (1%, 1.5 %, and 2% by volume) and the best percentage was found to be 1%. The addition of Polypropylene Fibers enhances splitting tensile and flexural strength at 28 days by 14.55% and 55% respectively.

Crossref
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete
...Show More Authors

One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate con

... Show More
Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Civil And Environmental Engineering
Influence of Different Factors on Permanent Deformation of Hot Asphalt Concrete Mixtures
...Show More Authors

The performance of flexible pavements is significantly impacted by the permanent deformation (rutting) of asphalt pavements. Rutting shortens the pavement's useful service life and poses significant risks to those using the highway since it alters vehicle handling characteristics.. The aim of this research is to evaluate the permanent deformation of asphalt mixtures under different conditions,to achieve this aim 108 cylindrical specimens has been prepared and tested under repeated loading in uniaxial compression mode. Five factors were considered in this research, these factors represent the effect of environmental condition and traffic loading as well as mixture properties, they include testing temperature, loading condition (stress level

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
The Effect Of Curing Types On Compressive Strength Of High Performance Concrete
...Show More Authors

The present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 13 2018
Journal Name
International Journal Of Engineering & Technology
Effect of Steel Fiber on Properties of High Performance No-Fine Concrete
...Show More Authors

No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
Effect of Kerosene and Gasoline on Some Properties of High Performance Concrete
...Show More Authors

During the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Nano Calcium Carbonate on Some Properties of Reactive Powder Concrete
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun May 22 2022
Journal Name
Materials
Size Effect of Hydrated Lime on the Mechanical Performance of Asphalt Concrete
...Show More Authors

Despite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties

... Show More
View Publication
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete
...Show More Authors

As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w

... Show More
View Publication
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Oct 12 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Nanomaterials on the Properties of Limestone Dust Green Concrete
...Show More Authors

Portland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Materials
Comparative Analysis of Reinforced Asphalt Concrete Overlays: Effects of Thickness and Temperature
...Show More Authors

Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref