Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency and ground-state calculations. Next, we performed TD-CAM-B3LYP calculations to compute oscillator strength (f) and the maximum adsorption wavelength (λmax). The absorption bands were extended up to ∼ 647 nm for AL-22. The findings demonstrated that AL-22 is the most promising dye among other dyes.
This research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
This study used a continuous photo-Fenton-like method to remediate textile effluent containing azo dyes especially direct blue 15 dye (DB15). A Eucalyptus leaf extract was used to create iron/copper nanoparticles supported on bentonite for use as catalysts (E@B-Fe/Cu-NPs). Two fixed-bed configurations were studied and compared. The first one involved mixing granular bentonite with E@B-Fe/Cu-NPs (GB- E@B-Fe/Cu-NPs), and the other examined the mixing of E@B-Fe/Cu-NPs with glass beads (glass beads-E@B-Fe/Cu-NPs) and filled to the fixed-bed column. Scanning electron microscopy (SEM), zeta potential, and atomic forces spectroscopy (AFM) techniques were used to characterize the obtained particles (NPs). The effect of flow rate and DB15 concent
... Show MoreThe aim of this study is to investigate the ability of malachite green (MG) combined with 650nm diode laser to kill Candida albicans and to spectrally study the MG photodegradation after photodynamic therapy (PDT) spectrally. Cultures of Candida albicans were exposed to 40mW, 650 nm diode laser in the absence of MG. In PDT group, the MG was added to the Candida suspension for 5 min then exposed to diode laser for (5, 10, 15, 20) min at power density of 0.59W/cm2. The absorption spectrum of the photosensitized fungal suspension was obtained. The data were submitted to T-test (p<0.05). A 650nm diode laser in the presence of MG reduced the number of CFU/ml in 98.4%. Laser with 650nm alone and MG alone did not reduce significantly the num
... Show MoreKE Sharquie, SA Al-Mashhadani, AA Noaimi, WB Al-Zoubaidi, Our Dermatology Online/Nasza Dermatologia Online, 2015 - Cited by 10
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show More