Objective: In this work we design and evaluate a bidirectional pneumatic soft actuator made from silicone rubber (RTV2 C10) for the use in prosthetic hand. The actuator aimed to enhance flexibility and provide motion in two directions that mimic the actions of the human fingers. Materials and Methods: Two parallel air chambers are used in the actuator design where each chamber is divided into smaller internal cavities. These chambers are linked through a narrow connecting channel. The fabrication process relied on a molding technique based on 3D printed molds. Three separate mold components were designed and printed to allow accurate casting of silicone rubber into the desired shape. The completed actuators were then tested using an experimental setup. Results: We evaluate the performance of the developed actuators by measuring the maximum bending angle and output force under various air pressures. Three air-chamber dimensions (3.5 mm, 4.5 mm, and 5.5 mm) were tested to compare the actuator’s response. We noticed that the 5.5 mm chamber produced the largest bending angle whereas the 3.5 mm chamber showed the smallest. On the other hand, force analysis revealed that the actuator with 3.5 mm spacing generated the highest output force at an air pressure of 102 kPa and the 5.5 mm model returned the lowest under the same conditions. Discussion: The findings suggest that increasing the distance between air chambers enhances bending and overall flexibility where it indicates that shorter chamber spacing raises greater force. Conclusion: The developed actuator demonstrates promising properties for use in prosthetic hand designs. The bending range and force output enable the actuator for producing human-like finger motion that used in assistive robotic applications.
Copper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
In this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
Background: The symptoms of Parkinson's disease (PD) can lead to problems in movement and coordination that lead to difficulty in maintaining well oral cleaning which can then negatively affect dental status of those Patients. The aim of present study: To evaluate prosthetic status in relation to weight status and occupation by age and gender among Parkinson's disease Patients in Baghdad-Iraq. Methods: The sample consisted of 104 patients with Parkinson disease attended to the Neurosciences Hospital in Baghdad city / Iraq, aged 60-79 years Prosthetic Status was recorded according to WHO(1997). Weight status was recorded according to Trowbridge 1988 and occupation was recorded according to Erikson and Goldthorpe (1992) and Ganzeboom et al (
... Show MoreGraphene oxide (GO) was prepared from graphite (GT) with Hammer method, the GO was reduced with hydrazine hydrate to produce a reduced graphene oxide (RGO). The RGO was reacted with thiocarbohydrazide (TCH) to functionalize the RGO with 4-amino-3-symbol-1h-1, 2, 4-triazol-5 (4H) –thion group and to obtain (RGOT). All the prepared nanomaterial and the product of the functionalization RGOT were characterized with Fourier transformer infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis. RGOT mixed with ultrasonic device at different pH values of phosphate buffer solution (PBS), the mixture used to modifying a screen printed carbon electrodes SPCE and with cyclic voltammetry the sensitivity of selectivity of the new modifying elect
... Show MoreIncremental sheet forming (ISF) is a metal forming technology in which small incremental deformations determine the final shape. The sheet is deformed by a hemispherical tool that follows the required shape contour to deform the sheet into the desired geometry. In this study, single point incremental sheet forming (SPIF) has been implemented in dentistry to manufacture a denture plate using two types of stainless steel, 304 and 316L, with an initial thickness of 0.5mm and 0.8mm, respectively. Stainless steel was selected due to its biocompatibility and reasonable cost. A three-dimensional (3D) analysis procedure was conducted to evaluate the manufactured part's geometrical accuracy and thickness distribution. The obtained results confirm
... Show More