Objective: In this work we design and evaluate a bidirectional pneumatic soft actuator made from silicone rubber (RTV2 C10) for the use in prosthetic hand. The actuator aimed to enhance flexibility and provide motion in two directions that mimic the actions of the human fingers. Materials and Methods: Two parallel air chambers are used in the actuator design where each chamber is divided into smaller internal cavities. These chambers are linked through a narrow connecting channel. The fabrication process relied on a molding technique based on 3D printed molds. Three separate mold components were designed and printed to allow accurate casting of silicone rubber into the desired shape. The completed actuators were then tested using an experimental setup. Results: We evaluate the performance of the developed actuators by measuring the maximum bending angle and output force under various air pressures. Three air-chamber dimensions (3.5 mm, 4.5 mm, and 5.5 mm) were tested to compare the actuator’s response. We noticed that the 5.5 mm chamber produced the largest bending angle whereas the 3.5 mm chamber showed the smallest. On the other hand, force analysis revealed that the actuator with 3.5 mm spacing generated the highest output force at an air pressure of 102 kPa and the 5.5 mm model returned the lowest under the same conditions. Discussion: The findings suggest that increasing the distance between air chambers enhances bending and overall flexibility where it indicates that shorter chamber spacing raises greater force. Conclusion: The developed actuator demonstrates promising properties for use in prosthetic hand designs. The bending range and force output enable the actuator for producing human-like finger motion that used in assistive robotic applications.
In this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
The effect of subinhibitory concentration of Antibiotics on the Adherence of S.aureus (Coagulase Positive Staphylococci), and S.epidermidis (Coagulase negative Staphylococci) and Pseudomonas aeruginosa, Enterobacter cloacae, Citobacter freundi (Gram negative bacteria) was done and the results revealed that Rifampicin was the best antibiotic inhibiting Staphylococci adherence and Vancomycin has less effect on the adherence of Staphylococci, whereas Tetracyclin was the best antibiotic inhbiting Gram negative bacteria adherence and Amikacin has the lest less effect on inhibiting bacterial adherence.
The study deals with China's soft power and diplomacy in the Middle East, and it focuses specifically on the tools and foundations of China's soft diplomacy and how it achieves its goals in the region in addition to its challenges in the region. In this regard, the study also focuses on the Chinese Belt and Road Initiative and its soft foundations and how they serve China’s diplomacy and soft power in the region. The study ends with a set of conclusions, perhaps the most prominent of which is that diplomacy and soft power have become a fundamental pillar of China's foreign policy to achieve its foreign goals and to establish an international system compatible with China's principles. As for the Middle East, China has established a poli
... Show MoreThis research including, CO3O4 was prepared by the chemical spry pyrolysis, deposited film acceptable to assess film properties and applications as photodetector devise, studying the optical and optoelectronics properties of Cobalt Oxide and effect of different doping ratios with Br (2, 5, 8)%. the optical energy gap for direct transition were evaluated and it decreases as the percentage Br increase, Hall measurements showed that all the films are p-type, the current–voltage characteristic of Br:CO3O4 /Si Heterojunction show change forward current at dark varies with applied voltage, high spectral response, specific detectivity and quantum efficiency of CO3O4 /Si detector with 8% of Br ,was deliberate, extreme value with 673nm.
... Show MoreThis mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent d
... Show MoreIron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc
... Show MorePure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the ra
... Show More