This research including, CO3O4 was prepared by the chemical spry pyrolysis, deposited film acceptable to assess film properties and applications as photodetector devise, studying the optical and optoelectronics properties of Cobalt Oxide and effect of different doping ratios with Br (2, 5, 8)%. the optical energy gap for direct transition were evaluated and it decreases as the percentage Br increase, Hall measurements showed that all the films are p-type, the current–voltage characteristic of Br:CO3O4 /Si Heterojunction show change forward current at dark varies with applied voltage, high spectral response, specific detectivity and quantum efficiency of CO3O4 /Si detector with 8% of Br ,was deliberate, extreme value with 673nm.
... Show MoreN-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreIn this work we present a detailed study on anisotype nGe-pSi heterojunction (HJ) used as photodetector in the wavelength range (500-1100 nm). I-V characteristics in the dark and under illumination, C-V characteristics, minority carriers lifetime (MCLT), spectral responsivity, field of view, and linearity were investigated at 300K. The results showed that the detector has maximum spectral responsivity at λ=950 nm. The photo-induced open circuit voltage decay results revealed that the MCLT of HJ was around 14.4 μs
Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction
In this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
This studies p- CuO / n - Si hete-rojunction was deposited by high vacuum thermal evaporation of Copper subjected to thermal oxidation at 300 oC on silicon. Surface morphology properties of The optical properties concerning the transmission spectra were studies for prepared thin films. this structure have been studied. XRD anaylsis discover that the peak at (𝟏𝟏𝟏-) and (111) plane are take over for the crystal quality of the CuO films. The band gap of CuO films is found to be 1.54 eV. The average grain size of is measured from AFM analysis is around 14.70 nm. The responsivity photodetector after deposited CuO appear increasing in response
In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
Metoclopramide (MCP) ion selective electrodes based on metoclopramide-phosphotungstic acid (MCP-PT) ion pair complex in PVC matrix membrane were constructed. The plasticizers used were tri-butyl phosphate (TBP), di-octyl phenyl phosphonate (DOPP), di-butyl phthalate (DBPH), di-octyl phthalate (DOP), di-butyl phosphate (DBP), bis 2-ethyl hexyl phosphate (BEHP). The sensors based on TBP, DOPP, DBPH and DOP display a fast, stable and linear response with slopes 59.9, 57.7, 57.4, 55.3 mV/decade respectively at pH ranged 2-6. The linear concentration range between 1.0×10-5 – 1.0×10-2 M with detection limit 3.0×10-6 and 4.0×10-6 M for electrodes using TBP, DOPP and DBPH while e
... Show More