Preferred Language
Articles
/
lRfgPo8BVTCNdQwCGGXF
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.

Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A survey of deepfakes in terms of deep learning and multimedia forensics
...Show More Authors

Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 24 2021
Journal Name
Oncology And Radiotherapy
The effect of different clinicopathological parameters on disease free survival in triple negative breast cancer Iraqi women
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Parasitology
The role of intestinal protozoa in chronic obstructive pulmonary disease exacerbation
...Show More Authors

chronic obstructive pulmonary disease (COPD) is a common respiratory disease with episodes of exacerbation. Variable factors including infectious pathogen can predispose for this exacerbation. The aim of this study is to evaluate the role of intestinal protozoa in COPD exacerbation. A total of 56 patients with COPD were included in this study. Patients were categorized into two groups based on the frequency of exacerbation during the last 6 months: those with ≤1 exacerbation (32 patients) and those with ≥2 exacerbations (24 patients). Stool specimens from each patient were collected two times (one week interval) examined for intestinal parasite. In univariate analysis, rural residence and parasitic infection were more common among patie

... Show More
View Publication
Scopus (1)
Scopus
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Nurses' Job Satisfaction in Respiratory Isolation Units of Coronavirus Disease
...Show More Authors

Abstract

Objective(s): To assess the job satisfaction during of covid-19 among the nurses in respiratory isolation units of coronavirus disease.

Methodology: A descriptive cross-sectional design was carried out in four hospitals at isolation units of coronavirus disease from the period (21th December, 2021 to 27th January, 2022). A non-probability (convenience) sampling method consists of (300) nurse was selected convenience based on the study criteria. The tool used to measure the job satisfaction is Job satisfaction scale for clinical nursing (JSS-CN). This tool consists of two parts, the first part is for demographic information and consists of 8 items, and the second

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 24 2021
Journal Name
International Journal Of Differential Equations
The Impact of Media Coverage and Curfew on the Outbreak of Coronavirus Disease 2019 Model: Stability and Bifurcation
...Show More Authors

In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Aug 07 2019
Journal Name
Iraqi National Journal Of Nursing Specialties
Effectiveness of an Instructional Program Concerning premarital screening of sexual transmitted disease on Student's Knowledge at Baghdad University
...Show More Authors

Objectives: To identify the effectiveness of instructional program concerning premarital screening of sexual transmitted disease on student's knowledge at Baghdad University and examine the relationship between students' knowledge and certain studied variables. And hypothesis for this study; There is a difference in university student’s knowledge toward premarital screening between pre and posttests of instructional program. Methodology: A quasi-experimental design (pretest-posttest approach) was conducted at six colleges and its college of education ibn rushd, college of political science, college of law, college of literatur

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 15 2021
Journal Name
Geomechanics And Geoengineering
Effect of Deep Remediation and Improvement on Bearing Capacity and Settlement of Piled Raft Foundation Subjected to Static and Cyclic Vertical Loading
...Show More Authors

View Publication Preview PDF
Scopus (8)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref