Preferred Language
Articles
/
lRfgPo8BVTCNdQwCGGXF
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the use of Gray Level Co-occurrence Matrix (GLCM) features and DBN classifier provides 98.26% accuracy with the two specific classes were tested. Improvements/Applications: AD is a neurological condition affecting the brain and causing dementia that may affect the mind and memory. The disease indirectly impacts more than 15 million relatives, companions and guardians. The results of the present research are expected to help the specialist in decision making process.

Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Parasitology
The role of intestinal protozoa in chronic obstructive pulmonary disease exacerbation
...Show More Authors

chronic obstructive pulmonary disease (COPD) is a common respiratory disease with episodes of exacerbation. Variable factors including infectious pathogen can predispose for this exacerbation. The aim of this study is to evaluate the role of intestinal protozoa in COPD exacerbation. A total of 56 patients with COPD were included in this study. Patients were categorized into two groups based on the frequency of exacerbation during the last 6 months: those with ≤1 exacerbation (32 patients) and those with ≥2 exacerbations (24 patients). Stool specimens from each patient were collected two times (one week interval) examined for intestinal parasite. In univariate analysis, rural residence and parasitic infection were more common among patie

... Show More
View Publication
Scopus (1)
Scopus
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Shigellosis Bacteria disease Model with Awareness Effects
...Show More Authors

In this paper, a mathematical model is proposed and studied to describe the spread of shigellosis disease in the population community. We consider it divided into four classes namely: the 1st class consists of  unaware susceptible individuals, 2nd class of infected individuals, 3rd class of aware susceptible individuals and 4th class are people carrying bacteria. The solution existence, uniqueness as well as bounded-ness are discussed for the shigellosis model proposed. Also, the stability analysis has been conducted for all possible equilibrium points. Finally the proposed model is studied numerically to prove the analytic results and discussing the effects of the external sources for dis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (31)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Energy Sources, Part A: Recovery, Utilization, And Environmental Effects
Ultra Deep Hydrotreatment of Iraqi Vacuum Gas Oil Using a Modified Catalyst
...Show More Authors

A set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v

... Show More
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (9)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Advanced Veterinary And Animal Research
Selenium nanoparticles effect on foot and mouth disease vaccine in local Awassi breed male lambs
...Show More Authors

Objective: The goal of this research was to evaluate where selenium nanoparticles impact the activity of antibodies in immunized lambs with foot and mouth vaccines by modulating the immune system. Materials and Methods: Two groups of lambs of 3–4 months of age were injected with 1 ml of ARRIAH-VAC vaccine intramuscularly in the neck, five Lambs were given selenium nanoparticles (size 100 nm) oral administration of selenium nano dose of 0.1 mg/kg of body mass once every day for sixty days considered as group one (G1) while the other five used as control Group 2 (G2). Results: This resulted in the establishment of an immune response, as evidenced by a rise in antibody titer in the blood using the ELISA test for three serotypes A,

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
A comparison and classification of land use land cover to estimate their effect on environment: case study in Baghdad city
...Show More Authors
Abstract<p>This study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green </p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Nurses' Job Satisfaction in Respiratory Isolation Units of Coronavirus Disease
...Show More Authors

Abstract

Objective(s): To assess the job satisfaction during of covid-19 among the nurses in respiratory isolation units of coronavirus disease.

Methodology: A descriptive cross-sectional design was carried out in four hospitals at isolation units of coronavirus disease from the period (21th December, 2021 to 27th January, 2022). A non-probability (convenience) sampling method consists of (300) nurse was selected convenience based on the study criteria. The tool used to measure the job satisfaction is Job satisfaction scale for clinical nursing (JSS-CN). This tool consists of two parts, the first part is for demographic information and consists of 8 items, and the second

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams With and Without Opening
...Show More Authors

This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an

... Show More
View Publication Preview PDF
Crossref (4)
Crossref