Preferred Language
Articles
/
lRc4Po4BVTCNdQwC4T7v
Data Analytics and Techniques
...Show More Authors

Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide improvements for many applications. In addition, critical challenges and research issues were provided based on published paper limitations to help researchers distinguish between various analytics techniques to develop highly consistent, logical, and information-rich analyses based on valuable features. Furthermore, the findings of this paper may be used to identify the best methods in each sector used in these publications, assist future researchers in their studies for more systematic and comprehensive analysis and identify areas for developing a unique or hybrid technique for data analysis.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 06 2013
Journal Name
Eng. & Tech. Journal
A proposal to detect computer worms (malicious codes) using data mining classification algorithms
...Show More Authors

Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete

... Show More
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data
...Show More Authors

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroup

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Ten Years of OpenStreetMap Project: Have We Addressed Data Quality Appropriately? – Review Paper
...Show More Authors

It has increasingly been recognised that the future developments in geospatial data handling will centre on geospatial data on the web: Volunteered Geographic Information (VGI). The evaluation of VGI data quality, including positional and shape similarity, has become a recurrent subject in the scientific literature in the last ten years. The OpenStreetMap (OSM) project is the most popular one of the leading platforms of VGI datasets. It is an online geospatial database to produce and supply free editable geospatial datasets for a worldwide. The goal of this paper is to present a comprehensive overview of the quality assurance of OSM data. In addition, the credibility of open source geospatial data is discussed, highlighting the diff

... Show More
Crossref (3)
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Iraqi Journal Of Science
Strong Triple Data Encryption Standard Algorithm using Nth Degree Truncated Polynomial Ring Unit
...Show More Authors

Cryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms to

... Show More
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media
...Show More Authors

In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Journal Of Theoretical And Applied Information Technology
Anomaly detection in text data that represented as a graph using dbscan algorithm
...Show More Authors

Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Stability testing of time series data for CT Large industrial establishments in Iraq
...Show More Authors

Abstract: -
The concept of joint integration of important concepts in macroeconomic application, the idea of ​​cointegration is due to the Granger (1981), and he explained it in detail in Granger and Engle in Econometrica (1987). The introduction of the joint analysis of integration in econometrics in the mid-eighties of the last century, is one of the most important developments in the experimental method for modeling, and the advantage is simply the account and use it only needs to familiarize them selves with ordinary least squares.

Cointegration seen relations equilibrium time series in the long run, even if it contained all the sequences on t

... Show More
View Publication Preview PDF
Crossref