Preferred Language
Articles
/
lIb0dIYBIXToZYALHope
Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano silica and Subjected to Aging Process
...Show More Authors

High-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall stability, flow, and wheel tracking tests. Field Emission Scanning Electron Microscopy (FESEM) was utilized to understand the microstructure changes of modified asphalt and estimate the dispersion of NS within the asphalt. The results revealed that using NS–asphalt mixtures as a surface layer in paving construction improved pavement performance by increasing stability, volumetric characteristics, and rutting resistance before and after aging. The FESEM images showed adequate dispersion of NS particles in the mixture. Results indicated that adding 4% of NS to asphalt mixtures effectively enhanced the pavement’s performance and rutting resistance. Doi: 10.28991/CEJ-SP2023-09-01 Full Text: PDF

Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Advanced Powder Technology
Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique
...Show More Authors

View Publication
Scopus (84)
Crossref (83)
Scopus Clarivate Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Offshore Technology Conference Asia
Prediction of Hydrate Phase Equilibrium Conditions for Different Gas Mixtures
...Show More Authors
Abstract<p>Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie</p> ... Show More
Scopus (6)
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Engineering
Study the Effect of using RAP in Warm Mix Asphalt Pavement.
...Show More Authors

Sustainability is providing the needs without compromising the ability of the strategical forming to meet their requirements. The production of warm asphalt mixtures using recycled pavements produces economic and environmentally friendly mixtures, which is the most important advantage of this work. This research aims to determine the effect of recycled asphalt concrete (RAP) on the indirect tensile strength of warm asphalt mixtures and Marshall Properties. Models of warm asphalt mixtures using Aggregate from the Al-Nibaay quarry, Asphalt with a degree of penetration (40-50) from the refinery of the cycle, and obtained Recycled asphalt concrete from Salah Al-Din Road, Al-Ameriya area in Baghdad are prepared. Use five rati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
2019 International Engineering Conference (iec)
Assessment of Specific Absorption Rate and Temperature in the Tumor Tissue Subjected to Plasmonic Bow-Tie Optical Nano-Antenna
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Construction Materials
Enhancing asphalt binder performance through nano-SiO2 and nano-CaCO3 additives: Rheological and physical insights
...Show More Authors

During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2

... Show More
View Publication
Scopus (21)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Improving the Properties of Asphalt Concrete Mixtures Using Iron Filling Wastes
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
A Review of the Asphalt Mixtures Containing Recycled Solid Waste Materials
...Show More Authors

Landfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 10 2013
Journal Name
Journal Of Materials Science And Engineering
Energy Transfer of Rhodamine110-Oxazine1 Mixtures Encapsulated in Glass Like Silica Xerogel Matrices
...Show More Authors

Publication Date
Tue Dec 14 2021
Journal Name
Sustainability
Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt
...Show More Authors

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b

... Show More
View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Tue Dec 14 2021
Journal Name
Sustainability
Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt
...Show More Authors

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b

... Show More
Crossref (16)
Crossref