Preferred Language
Articles
/
lBfLgJEBVTCNdQwCwpW_
Comparison the solutions for some kinds of differential equations using iterative methods

This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.

Scopus
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

Clarivate
View Publication
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Elliptic Partial Differential Equations

In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

Crossref
View Publication Preview PDF
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Variational Iteration Method for Solving Multi-Fractional Integro Differential Equations

In this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.

View Publication Preview PDF
Publication Date
Thu May 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Solving Fractional Hyperbolic Partial Differential Equations

    In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional  partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution

View Publication Preview PDF