Preferred Language
Articles
/
lBfLgJEBVTCNdQwCwpW_
Comparison the solutions for some kinds of differential equations using iterative methods

This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.

Scopus
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions Of The Nonlocal Problems For The Diffusion Partial Differential Equations

    In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.

View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Approximate Analytical Methods to Solve Some Partial Differential Equations

     The goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Crossref (19)
Crossref
View Publication
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (8)
Scopus
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
The Numerical Solutions of Nonlinear Time-Fractional Differential Equations by LMADM

This paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.

Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Oscillation Criteria for Solutions of Neutral Differential Equations of Impulses Effect with Positive and Negative Coefficients: eventually positive solutions and differential inequalities

In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.

Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Proving The Existence and the Uniqueness Solutions of fractional Integro- Differential Equations

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.

View Publication Preview PDF