<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by using Peak Signal to Noise Ratio (PSNR). Depend on the value of PSNR that explained in the result section; we conclude that the (Tri-State Median filter) is better than (Switching Median filter) in denoising image quality, according to the results of applying rules the result of the Shrinking rule for each filter shows that the best result using first the Bivariate Shrink.</p>
This work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern wit
... Show MoreThis study was aimed to conduct one of the vertical garden systems , selecting suitable plant species that with stand the climate conditions of Baghdad city in outer space to determine the appropriate growing medium for the (LWS), and to assess the impact of spraying with potassium silicate on the resistance of the cultivated plants to heat stresses . The study carried out at at Al-Batool Park of (Al-Kadhimiya Holy City). Two experiments were carried out, each one with a different plant species, including Wedelia trilobata and Tradescantia pallida, during the winter season of 2021 and summer season of 2022. The experiments were designed using a split block design. The experiments included two factors, the first being the growing med
... Show MoreA total of 96 stool samples were collected from children with bloody diarrhea from two hospitals in Baghdad. All samples were surveyed and examined for the presence of the Escherichia coli O157:H7 and differentiate it from other Non -Sorbitol Fermenting Escherichia coli (NSF E. coli). The Bacterial isolates were identifed by using morphological diagnostic methods, Samples were cultured on liquid enrichment medium, incubated at 37C? for 24 hrs, and then cultured on Cefixime Tellurite -Sorbitol MacConkey Agar (CT- SMAC). 32 non-sorbitol fermenting bacterial isolates were obtained of which 11 were identified as Escherichia coli by using traditional biochemical tests and API20E diagnostic system without differentiation between
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show More