The employment of cognitive radio (CR) is critical to the successful development of wireless communications. In this field, especially when using the multiple input multiple output (MIMO) antenna technology, energy consumption is critical. If the principal user (PU) is present, developers can utilize the energy detecting approach to tell. The researchers employed two distinct phases to conduct their research: the intense and accurate sensing stages. After the furious sensing step was completed, the PU user was identified as having a maximum or minimal energy channel. There are two situations in which the proposed algorithm's performance is tested: channels for fading AWGN and Rayleigh. When the proposed methods' simulation results are compared with conventional approaches, the complexity of MIMO was reduced by roughly 42% at low SNR levels. With 70 samples and an acceptable drop in detection performance, the results were suitable for further testing.
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreWhile traditional energy sources such as oil, coal, and natural gas drive economic growth, they also seriously affect people’s health and the environment. Renewable energies (RE) are presently seen as an efficient choice for attaining long-term sustainability in development. They provide an adequate response to climate change and supply sufficient electricity. The current situation in Iraq results from a decades-long scarcity of reliable electricity, which has impacted various industries, including agriculture. There are diverse prospects for using renewable energy sources to address the present power crisis. The economic and environmental impacts of renewable energy systems were investigated in this study by using the solar pumpi
... Show MoreIn this paper , concrete micro-piles were used to improve the bearing capacity of the soil which is supporting the shallow foundation by using groups of (4; 6 and 9)bored short micro-piles which have, (D=0.125m and D=0.1m), and length to diameter ratio (L/D) equal to (6; 10 and 12) respectively. To calculate the bearing capacity of the micro-piles,(Tomlinson) and (Lamda) methods were used; also the soil properties were taken from Al-Muthana airport,(Al-Qyssi,2001) [1]. The results show that; increasing the number of piles and/ or the diameters and lengths; and the interaction between the bearing capacity of the shallow foundation with the bearing capacity of the pile group which leads to increasing the strength against the external loads
... Show MoreThe research addresses a fundamental Islamic jurisprudential Purposeful issue, which is (Sharia), and to indicate the impact of this on Islamic jurisprudence, deriving rulings and extracting purposes, and to repel the illusion that this issue is only doctrinal, and clarifying the aspects of similarities and links between them by explaining the origin of deriving the purposes of Islamic Law (Sharia) through the meanings and wisdom learned from the texts and the explanation of the rulings. The rulings of Islamic Law (Sharia) have urged bringing benefits and repelling harms, and that the path to do so is reason and its production. I began the research by defining the purposes of Islamic Law (Sharia), then defining the rule of rational right
... Show MoreHeat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreThis work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power
... Show MoreIn this study, the effect of increasing pump pulse energy and delay time on the energy conversion efficiency of the Potassium Titanyl Phosphate (KTP) crystal at room temperature was investigated. It was found that the higher the pump pulse the greater the efficiency at a certain value of the delay time. Moreover, at the delay time 3.524ns, we found that the efficiency of the conversion of energy increases from 0.0112 to 0.0159. We also observed that the lower delay time between the pump and the probe pulses leads to increase the rate of energy conversion efficiency of the KTP crystal, where the reaches up to 3, which is higher than the value recorded in the absence of a pump pulse. The highest value of the
... Show MoreA simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv
... Show MoreRotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect
... Show More