The impact of undergraduate research experiences on students' academic development and retention in STEM fields is significant. Students' success in STEM fields is based on developing strong research and critical thinking skills that make it essential for students to engage in research activities throughout their academic programs. This work evaluates the effectiveness of undergraduate research experiences with respect to its influence on student retention and academic development. The cases presented are based on years of experience implementing undergraduate research programs in various STEM fields at Colorado State University Pueblo (CSU Pueblo) funded by HSI STEM Grants. The study seeks to establish a correlation between students' retention rates and academic development and students' involvement in undergraduate research experiences and programs during their academic journey. The work also delves into different mentoring approaches, including group-based and mentoring by individual faculty. This study provides the engineering and STEM education community with a deeper understanding of the advantages of undergraduate research experiences in enriching STEM and mentoring practices that can increase students' participation and mold their academic and professional character.
Asthma is a chronic inflammatory disease that involves the narrowing of the lung airways and excessive mucus production. Resveratrol (RES), a polyphenolic stilbene, is known to control asthmatic attacks via different molecular mechanisms. However, no studies have examined the effect of resveratrol on the microbiome in the ovalbumin (OVA)-induced asthma mouse model. In this study, we induced asthma in BALB/c mice by injecting OVA followed by 7 days treatment with RES. Plethysmography showed that the expiratory resistance in the lung tissue was significantly reduced in the RES treated group, while mean volume, peak expiratory flow, and frequency of respiration was increased. Histopathol
Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MorePurpose: To explore whether baseline matrix metalloproteinase (MMP)-8 level in gingival crevicular fluid (GCF) (exposure) can predict the outcome (reduction in probing pocket depth (PPD) (outcome)) of nonsurgical periodontal therapy (NSPT) (manual or ultrasonic or both) in patients with periodontitis (population/problem) after 3 months. Methods: Six databases (PubMed, Cochrane library, ProQuest, Ovid, Scopus, EBSCO) were searched for relevant articles published until 30 July 2021. Retrieved articles were passed through a three-phase filtration process on the basis of the eligibility criteria. The primary outcome was the change in PPD after 3 months. Quality of the selected articles was assessed using Cochrane Risk of Bias tool (RoB2
... Show MoreThe present study introduced a new description of the last larval instar of the oak tree borer, Latipalpis johanidesi Niehuis, 2002 (Coleoptera, Buprestidae). The larval specimens were collected from the oak trees within the mountainous areas, Erbil governorate, Iraqi Kurdistan Region, during the beginning of April till the end of May 2019.
Schematic sketches were provided to illustrate unclear morphological features, and the results presented importance morphological evidence for confirming the identification of this species in the larval stage precisely.
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show More