Preferred Language
Articles
/
lBZirIoBVTCNdQwC8qJ0
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet attacks using CICIDS2017 dataset. The proposed model designed based on two types of filters to the botnet features; Correlation Attribute Eval and Principal Component deployed to reduce the dataset dimensions and to decrease the time complexity of the botnet detection process. The detection enhancement achieved by reducing the features of the dataset from 85 to 9. The training stage of classifiers is developed and compared based on six classifiers called (Random Forest, IBK, JRip, Multilayer Perceptron, Naive Bayes and OneR) evaluated to accomplish an optimized detection model. The performance and results of the proposed framework are validated using well-known metrics such as Accuracy (ACC), Precision (Pr), Recall (Rc) and F-Measure (F1). The consequence is that the combination of Correlation Attribute Eval (filter) with JRip (classifier) together can satisfy significant improvement in the Botnet detection process using CICIDS2017 dataset.</p>
Scopus Crossref
View Publication
Publication Date
Fri Jun 16 2023
Journal Name
Acta Scientiarum Polonorum Administratio Locorum
An analysis of Baghdad’s masterplans based on the development of green areas
...Show More Authors

Motives: Baghdad is the capital city and an important political, administrative, social, cultural and economic centre of Iraq. Baghdad’s growth and development has been significantly influenced by efforts to accommodate various needs of its steadily growing population. Uncontrolled population and urban growth have exerted negative effects in numerous dimensions, including environmental sustainability because urban expansion occurred in green spaces within the city and the surrounding areas.Aim: The aim of this study was to examine the planning solutions in Baghdad’s green areas in the past and at present, and to identify the key changes in the city’s green areas, including changes in the ratio of green urban spaces to the tota

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jul 01 2017
Journal Name
2017 Computing Conference
Protecting a sensitive dataset using a time based password in big data
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Feb 24 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effect of using Project - Based Learning method in development intensive reading skills at middle school students
...Show More Authors

The purpose of this research is to identify the effect of the use of project-based learning in the development of intensive reading skills at middle school students. The experimental design was chosen from one group to suit the nature of the research and its objectives. The research group consisted of 35 students. For the purpose of the research, the following materials and tools were prepared: (List of intensive reading skills, intensive reading skills test, teacher's guide, student book). The results of the study showed that there were statistically significant differences at (0.05) in favor of the post-test performance of intensive reading skills. The statistical analysis also showed that the project-based learning approach has a high

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Genetic--Based Face Retrieval Using Statistical Features
...Show More Authors

Publication Date
Sat Jan 02 2010
Journal Name
Journal Of Al-nahrain University
HIDDEN FEATURES DETECTION USING HISTOGRAM MODIFICATION IN MRI IMAGES
...Show More Authors

Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme

... Show More
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks

... Show More
View Publication
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Arabic Cyberbullying Detection Using Support Vector Machine with Cuckoo Search
...Show More Authors

      Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection
...Show More Authors

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF