Preferred Language
Articles
/
lBZirIoBVTCNdQwC8qJ0
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet attacks using CICIDS2017 dataset. The proposed model designed based on two types of filters to the botnet features; Correlation Attribute Eval and Principal Component deployed to reduce the dataset dimensions and to decrease the time complexity of the botnet detection process. The detection enhancement achieved by reducing the features of the dataset from 85 to 9. The training stage of classifiers is developed and compared based on six classifiers called (Random Forest, IBK, JRip, Multilayer Perceptron, Naive Bayes and OneR) evaluated to accomplish an optimized detection model. The performance and results of the proposed framework are validated using well-known metrics such as Accuracy (ACC), Precision (Pr), Recall (Rc) and F-Measure (F1). The consequence is that the combination of Correlation Attribute Eval (filter) with JRip (classifier) together can satisfy significant improvement in the Botnet detection process using CICIDS2017 dataset.</p>
Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Detection of Increasing of Tropospheric NO2 over some Iraqi Cities by using Satellite Data
...Show More Authors

This paper focus on study the variations of monthly tropospheric NO2 concentrations over three Iraqi cities Baghdad (33.3° N, 44.4° E), Basrah (30.56° N, 47.8° E) and Erbil (36.3° N, 44.06° E). Monthly NO2 retrievals from the Ozone Monitoring Instrument (OMI) onboard Aura satellite during the period from October 2004 to March 2013 have been used.  The results show a high monthly and annual NO2 concentrations at Baghdad than Basra and Erbil may be attribute to high densely populations and a high economic activity. During the whole period, Baghdad, Basrah and Erbil were exhibited an average of NO2 (8.1±2.5), (3.7±1.3) and (3.3±1.7) in unit 1015 molecules

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 08 2024
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Annals Of Tropical Medicine And Public Health
Isolation and identification of fungi from fish feedstuff of cyprinus carpio and detection of aflatoxin b1 and ochratoxin a using ELISA technique
...Show More Authors

This study was conducted at the College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad. The aim of this study was to isolate and diagnose fungi from fish feedstuff samples, and also detection of aflatoxin B1 and ochratoxin A in fish muscles and feedstuffs. Randomly, the samples were collected from some fish farms from Baghdad, Babil, Wasit, Anbar, and Salah al-Din provinces. This study included the collection of 35 feedstuff samples and 70 fish muscle samples, and each of the two fish samples fed on one sample of the feedstuff. The results showed the presence of several genera of different fungi including Aspergillus spp, Mucor spp., Penicillium spp., Yeast spp., Fusarium spp., Rhizopus spp., Scopiolariopsis spp., Ep

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Surface Plasmon Resonance (SPR)-Based Multimode Optical Fiber Sensors for Electrical Transformer Oil Aging Detection
...Show More Authors

I

In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 27 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Early detection of periodontitis among young adult cigarette smokers and non-smokers using cone beam computed tomography
...Show More Authors

Background: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Analytical And Bioanalytical Chemistry Research
Mutual Derivatization in the Determination of Dapsone and Thymol Using Cloud Point Extraction Followed by Spectrophotometric Detection
...Show More Authors

A procedure for the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction; i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg ml-1 for thymol and 0.3-4 μg ml-1 for Dapsone, with limits of detection 0.086 and 0.053 μg ml-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed

... Show More
Scopus (1)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Change detection of the land cover for three decades using remote sensing data and geographic information system
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Feb 15 2023
Journal Name
Full Text Book Of Minar Congress 7
EVALUATING THE CHANGE DETECTION OF(NDVI) FOR BABYLON CITY USING REMOTE SENSING AND GIS TECHNIQUES (2015-2020)
...Show More Authors

The normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t

... Show More
View Publication
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Iraqi Journal Of Science
Land cover change detection of Baghdad city using multi-spectral remote sensing imagery
...Show More Authors

Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
A Prevalence study of Entamoeba spp. in Basrah Province using Different Detection Methods
...Show More Authors

This study aims to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and
Entamoeba moshkovskii by three methods of diagnosis (microscopic examination, cultivation and PCR) that
were compared to obtain an accurate diagnosis of Entamoeba spp. during amoebiasis. Total (n=150) stool
samples related to patients were (n = 100) and healthy controls (n= 50). Clinically diagnosed stool samples
(n=100) were collected from patients attending the consultant clinics of different hospitals in Basrah during
the period from January 2018 to January 2019. The results showed that 60% of collected samples were
positive in a direct microscopic examination. All samples were cultivated on different media; the Bra

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref