Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is needed, one that can represent the key aspects of soil behavior using simple parameters. In this regard, the powerful hypoplasticity model is suggested in this paper. It is classified as a non-linear model in which the stress increment is stated in a tonsorial form as a function of strain increment, actual stress, and void ratio. Eight material characteristics are needed for the hypoplastic model. The hypoplastic model has a unique way to keep the state variables and material parameters separated. Because of this property, the model can implement the behavior of soil under a variety of stresses and densities while using the same set of material properties.
Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).
This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreSpatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show MoreThe cervical cancer considered as the fourth female prevalent disease worldwide, it was once the most extensively recognized female cancer two in many low-income countries. Human Cytomegalovirus (HCMV) exhibits broader tropism and can cause infection in most of the human body organs. Although, human cytomegalovirus HCMV is not yet considered an oncogenic virus, there is increased evidences of HCMV infection implication in malignant diseases of different cancer types. The present study aims to evaluate the effect of CMV infection on the development of HPV16 positive cervical cancinoma. The current retrospective study enrolled a number of paraffinized cervical cancer tissues .included 30 cervical carcinomatous tissues and 10 biopsies from an
... Show MoreThe esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac
... Show More