Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is needed, one that can represent the key aspects of soil behavior using simple parameters. In this regard, the powerful hypoplasticity model is suggested in this paper. It is classified as a non-linear model in which the stress increment is stated in a tonsorial form as a function of strain increment, actual stress, and void ratio. Eight material characteristics are needed for the hypoplastic model. The hypoplastic model has a unique way to keep the state variables and material parameters separated. Because of this property, the model can implement the behavior of soil under a variety of stresses and densities while using the same set of material properties.
The aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show MoreKnowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format
... Show MoreBackground: Myasthenia gravis is an autoimmune disease of the neuromuscular junction that results in fluctuating muscle weakness as well as significant fatigue. Disease exacerbation is a critical condition, and the predisposing factors for it need to be identified to improve preventive measures.
Objectives: Our study aims to determine the predisposing factors for myasthenia gravis exacerbations in a group of Iraqi patients.
Subjects and Methods: A total number of 30 myasthenia gravis patients were admitted to the hospital with an exacerbation of their symptoms, determined as the development of functional disability, dysphagia, or respiratory fai
... Show MoreThe Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes. Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2 gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r
... Show MoreThe main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show Moreالغرض - تعتمد هذه الدراسة على المنهج الوصفي التحليلي من خلال جمع البيانات اللازمة وتحليلها، كون هذا المنهج يركز على استطلاع الآراء لعينة البحث وتوجهاتها ، وتهدف إلى تطوير نموذج يدرس العلاقة بين خلق المعرفة والبراعة التنظيمية في المصارف الخاصة العراقية والتحقق من صحته تجريبياً. التصميم / المنهجية / المدخل- تم إجراء مسح عبر استمارة استبيان لجمع البيانات من عينة من (113) مدير من مصارف تجارية خاصة بالإضافة إلى ذلك ا
... Show MoreEvery so often, a confluence of novel technologies emerges that radically transforms every aspect of the industry, the global economy, and finally, the way we live. These sharp leaps of human ingenuity are known as industrial revolutions, and we are currently in the midst of the fourth such revolution, coined Industry 4.0 by the World Economic Forum. Building on their guideline set of technologies that encompass Industry 4.0, we present a full set of pillar technologies on which Industry 4.0 project portfolio management rests as well as the foundation technologies that support these pillars. A complete model of an Industry 4.0 factory which relies on these pillar technologies is presented. The full set of pillars encompasses cyberph
... Show MoreThis paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology
The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d
... Show More