Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attention-based convolutional neural network (CNN) model. To address age ambiguity, we evaluate the effects of different loss functions such as focal loss and Kullback-Leibler (KL) divergence loss. Additionally, we evaluate the accuracy of the estimation at different durations of speech. Experimental results from the Common Voice dataset underscore the efficacy of our approach, showcasing an accuracy of 87% for male speakers, 91% for female speakers and 89% overall accuracy, and an accuracy of 99.1% for gender prediction.
Background: Placenta is a chief cause of maternal and perinatal mortality and significant factor in fetal growth retardation. It undergoes different variations in weight, volume, structure, shape and function continuously throughout the gestation tosupport the prenatal life. Cautious examination of placenta can give information which can be useful in the management of complications in mother and the newborn. Objective: The present work has been attempted towards determination of the morphological ( macroscopic and microscopic) parameters of human full-term placentae and their relation with different parity and age group of mothers. Patients and Methods: A whole of 40 placentae were recently collected.They were divided into four groups
... Show MoreWhat concerns the research is employing the modern technology in a compatible way, because it has multiplied with the visual working functions and has grown in a special way with the development of the digital graphic design field which represents a crystallization product according to investigation and experimentation mechanism within the field of the scientific research in the design field and development of the skills of the first designing worker, who always seeks to find working and functional structures in order to produce a design with a clear meaning by utilizing the technological abilities including the acoustic tech
... Show MoreSpeech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
The Arabic Language is the native tongue of more than 400 million people around the world, it is also a language that carries an important religious and international weight. The Arabic language has taken its share of the huge technological explosion that has swept the world, and therefore it needs to be addressed with natural language processing applications and tasks.
This paper aims to survey and gather the most recent research related to Arabic Part of Speech (APoS), pointing to tagger methods used for the Arabic language, which ought to aim to constructing corpus for Arabic tongue. Many AI investigators and researchers have worked and performed POS utilizing various machine-learning methods, such as Hidden-Mark
... Show MoreCZTS / CdS / ZnO / ITO solar cell was studied using Solar Cell Capacitance Simulato-1D (SCAPS-1D) program. We performed an improvement on the theoretical cell by increasing the doping and thickness of some layers. As a result, the efficiency was shifted from 2.18% to 6.17% and several back reflection layers (BSL) were introduced on the enhanced cell until. We obtained a highest conversion efficiency of 13.99%. The best reflection layer (CZTSSe) was combined with the best buffer layer (CdSe), with thickness of 0.9µm, on the enhanced cell. Thereby, we obtained a cell with a conversion efficiency of 16.53%. A second improvement was made to the best obtained cell, where the CZTSSe with thickness of 0.05µm and the CdSe with thickness
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
Age is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to ensemble techniques that increases th
... Show MoreLately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show MoreThe aim of this research is to diagnose the attention deficit hyperactivity disorder among primary school pupils in Baquba city of Diyala province. The sample of the study consisted of (25) male and female pupils. The American Guide of Attention Deficit Hyperactivity Scale (DSM-IV, 1994) was used in this study in addition to Conner’s (1996) scale to measure the attention deficit hyperactivity disorder for teachers and parents. The result revealed that (19) male and female pupils diagnosed with attention deficit hyperactivity to various degrees.
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show More