The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
Zeolite Y nanoparticles were synthesized by sol - gel method. Dffirent samples using two silica sources were prepared.
Sodium metasilicate (Na2SiO3) (48% silica) and silicic acid silica (H2SiO3) (75% silica) were employed as silica
source and aluminum nitrate (Al(NO3)3.9H2O) was the aluminum source with tetrapropylammonium hydroxide
(TPAOH) as templating agent.
The synihesized-samples were characterized by X-ray diffraction, showed the requirement of diffirent aging time for
complete crystallization to be achieved. Transmission Electronic Microscope (TEM) images, showed the particles were
in the same range of 30 - 75 nm. FT-IR spectroscory, showed the synthesized samples having the zeolite Y crystal
properties. The i
This research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr
... Show MoreTiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
In the present study, chitosan Schiff base has been prepared from chitosan reaction with p-chloro benzaldehyde. The AuNPs and AgNPs were manufactured by extract of onion peels as a reducing agent. The AuNPs and AgNPs that have been synthesized were characterized through UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan / PEG has been prepared by using the approach of solution casting. Chitosan Schiff base / PEG Au and Ag nanocomposites were synthesized, nanocomposites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1693 cm-1 as a result of the (C=N) imine group. FESEM, DSC and TGA confirm the thermal stability
... Show MoreBackground: Otitis media with effusion is a common and important pediatric clinical problem; it is the leading cause of hearing impairment in children. Medical treatment remains controversial. Aim: To evaluate the usefulness of using topical nasal steroids in the treatment of otitis media with effusion. Patients and Methods: Between November 2019 and October 2022, a prospective controlled clinical study was carried out in the department of otolaryngology at Al-Jerrahat Teaching Hospital in Medical City, Baghdad, Iraq. This study comprised 40 patients with bilateral otitis media with effusion (23 males, 17 females). Two groups were created for the patients. Patients in group A (20 patients) were treated with mometasone furoate nasal spra
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show MoreThe predilection for 5G telemedicine networks has piqued the interest of industry researchers and academics. The most significant barrier to global telemedicine adoption is to achieve a secure and efficient transport of patients, which has two critical responsibilities. The first is to get the patient to the nearest hospital as quickly as possible, and the second is to keep the connection secure while traveling to the hospital. As a result, a new network scheme has been suggested to expand the medical delivery system, which is an agile network scheme to securely redirect ambulance motorbikes to the nearest hospital in emergency cases. This research provides a secured and efficient telemedicine transport strategy compatible with the
... Show More