Preferred Language
Articles
/
KBcA4I8BVTCNdQwCR3-J
Synthesis, Antibacterial, and Molecular Docking Study of Novel 2-Chloro-8-Methoxy-3-Aryl-[1,3] Benzoxazine Derivatives using Vilsmeier Reagent
...Show More Authors

Reducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacterial activity. Compounds (5d–i) did not display notable activity. The molecular docking of synthesised compounds were tested inside the pocket of bacterial gyrase enzyme target site by using MOE 2015 software, which acts as Adenosine triphosphate (ATP)-binding domain bacterial gyrase enzyme pocket and novobiocin was used as reference.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 02 2020
Journal Name
International Journal Of Drug Delivery Technology
Synthesis, Antibacterial and Molecular Docking Study of Novel 2-Chloro-8-Methoxy-3-Aryl-[1,3] Benzoxazine Derivatives Using Vilsmeier Reagen
...Show More Authors

Reducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl) amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones(5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones wassecerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds(5a) showed mild antibacterial activit

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Molecular Structure
Synthesis, biomedical activities, and molecular docking study of novel chromone derivatives
...Show More Authors

View Publication
Scopus (16)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Apr 26 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and Antibactrial Study of New 2-Amino-5-Aryl- 1,3-Thiazole-4-Carboxylic Acid Derivatives
...Show More Authors

2-Amino-5-aryl- 1,3-thiazole-4-carboxylic acid (A1-A3) were synthesized from the reaction of various aromatic aldehyde with dichloro acetic acid and thiourea. The synthesis of 2-[[(Saminosulfinim-idoyl)(aryl)methyl](benzoyl)amino]-5-aryl-1,3-thiazole-4-carboxylic acid (A22-A30) was perfomed starting from (A1-A3) by two steps using Schiff's base (A4-A12) prepared  from the reactant compounds (A1-A3) with different aromatic aldehyde. Finally two types of imide derivatives were obtained from reactant compounds (A1-A3) with malic anhydride (A31-A33) and phthalic anhydride (A34-A36) in the presence of glacial acetic acid. All proposed structures were supported by FT-IR and UV-Visible spectroscopic data.  
 

View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Pharmacy Research
Synthesis and antimicrobial evaluation of new-[2-amino-4- (4-chloro-/4-bromophenyl)-1,3-thiazole derivatives
...Show More Authors

Publication Date
Mon Oct 10 2022
Journal Name
Research Journal Of Chemistry And Environment
Synthesis, Antioxidant ability and Docking study for new 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)- diyl)bis(methylene))diphenol)
...Show More Authors

New series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydroxyl for t

... Show More
Publication Date
Sun Sep 25 2022
Journal Name
Research Journal Of Chemistry And Environment
Synthesis, Antioxidant ability and Docking study for new 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))diphenol)
...Show More Authors

New series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydr

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jul 10 2024
Journal Name
Pharmacia
Molecular docking, ADMET, synthesis and evaluation of new indomethacin hydrazide derivatives as antibacterial agents
...Show More Authors

Bacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Jul 18 2002
Journal Name
Phase Transitions
Designed new mesogens via Vilsmeier–Haack reagent: synthesis and phase transition study
...Show More Authors

A new four series of 2,2′-([1,1′- phenyl or biphenyl]-4,4′-diylbis(azanediyl)) bis(N′-((E)-1-(4-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI]a,b and 1,1′-(2,2′-([1,1′- phenyl or biphenyl]-4,4′-diyl bis(azanediyl)) bis- (acetyl)) bis(3-(4-ethoxyphenyl)-1H-pyrazole-4-carbalde hyde) [XII-XVIII]a,b have been synthesized by varying terminal lateral alkoxy chain length (n = 1–3, 5–8), central linkage group (phenyl or biphenyl) and induced pyrazole heterocyclic ring in the main chain. The last two series were synthesized by the cyclization of substituted acetophenone hydrazones with Vilsmeier–Haack reagent (DMF/POCl3) to produce 4-formylpyrazole derivatives. The chemical structures of the synthesized compounds were examine

... Show More
Scopus (2)
Scopus
Publication Date
Wed Oct 26 2022
Journal Name
Research Journal Of Chemistry And Environment
Synthesis, Antioxidant ability and Docking study for new 4, 4'-((2-(Aryl)-1H-benzo [d] imidazole-1, 3 (2H)-diyl) bis (methylene)) diphenol
...Show More Authors

New series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hy

... Show More
Preview PDF
Publication Date
Wed Oct 05 2022
Journal Name
Research Journal Of Chemistry And Environment
Synthesis, Antioxidant ability and Docking study for new 4, 4'-((2-(Aryl)-1H-benzo [d] imidazole-1, 3 (2H)-diyl) bis (methylene)) diphenol
...Show More Authors

New series of 4, 4'-((2-(Aryl)-1H-benzo [d] imidazole-1, 3 (2H)-diyl) bis (methylene)) Diphenol (3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydr

... Show More