The concealment of data has emerged as an area of deep and wide interest in research that endeavours to conceal data in a covert and stealth manner, to avoid detection through the embedment of the secret data into cover images that appear inconspicuous. These cover images may be in the format of images or videos used for concealment of the messages, yet still retaining the quality visually. Over the past ten years, there have been numerous researches on varying steganographic methods related to images, that emphasised on payload and the quality of the image. Nevertheless, a compromise exists between the two indicators and to mediate a more favourable reconciliation for this duo is a daunting and problematic task. Additionally, the current techniques have not been successful in attaining more improved security caused by the non-encrypted data that only underwent the first layer of concealment through merely a straightforward embedment process of the secret data within the images, thus allowing the extraction of the concealed data to be quite simple for hostile entities. Hence, in the current study, the proposed scheme, we have improved the Bit Inverting Map method to narrow the gap of existing work. Our experimental results indicate that the proposed framework maintains a better balance between image visual quality and security, with relatively less computational and complexity, which assures its effectiveness compared to other state-of-the-art methods.
This paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreBilinear interpolation and use of perceptual color spaces (HSL, HSV, LAB, and LUV) fusion techniques are presented to improve spatial and spectral characteristics of the multispectral image that has a low resolution to match the high spatial resolution of a panchromatic image for different satellites image data (Orbview-3 and Landsat-7) for the same region. The Signal-to-Noise Ratio (SNR) fidelity criterion for achromatic information has been calculated, as well as the mean color-shifting parameters that computed the ratio of chromatic information loss of the RGB compound inside each pixel to evaluate the quality of the fused images. The results showed the superiority of HSL color space to fuse images over the rest of the spac
... Show MoreThe Normalized Difference Vegetation Index (NDVI) is commonly used as a measure of land surface greenness based on the assumption that NDVI value is positively proportional to the amount of green vegetation in an image pixel area. The Normalized Difference Vegetation Index data set of Landsat based on the remote sensing information is used to estimate the area of plant cover in region west of Baghdad during 1990-2001. The results show that in the period of 1990 and 2001 the plant area in region of Baghdad increased from (44760.25) hectare to (75410.67) hectare. The vegetation area increased during the period 1990-2001, and decreases the exposed area.
The need for image compression is always renewed because of its importance in reducing the volume of data; which in turn will be stored in less space and transferred more quickly though the communication channels.
In this paper a low cost color image lossy color image compression is introduced. The RGB image data is transformed to YUV color space, then the chromatic bands U & V are down-sampled using dissemination step. The bi-orthogonal wavelet transform is used to decompose each color sub band, separately. Then, the Discrete Cosine Transform (DCT) is used to encode the Low-Low (LL) sub band. The other wavelet sub bands are coded using scalar Quantization. Also, the quad tree coding process was applied on the outcomes of DCT and
This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show MoreA signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreAl-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized Difference Vegetation Index (NDVI), Geographic Information Systems(GIS), and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, th
... Show MoreImage processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it
... Show MoreImage texture is an important part of many types of images, for example medical images. Texture Analysis is the technique that uses measurable features to categorize complex textures. The main goal is to extract discriminative features that are used in different pattern recognition applications and texture categorization. This paper investigates the extraction of most discriminative features for different texture images from the “Colored Brodatz” dataset using two types of image contrast measures, as well as using the statistical moments on five bands (red, green, blue, grey, and black). The Euclidean distance measure is used in the matching step to check the similarity degree. The proposed method was tested on 112 classes o
... Show More