A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, whereas precast decks and shear connectors can be reused. A series of push-out tests are conducted to assess the behavior of the connector and quantify the effect of important parameters. The experimental results show shear resistance, stiffness, and slip capacity significantly higher than those of welded shear studs along with superior stiffness and strength against slab uplift. Identical tests reveal negligible scatter in the shear load-slip displacement behavior. A design equation is proposed to predict the shear resistance with absolute error less than 8%.
This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show MoreBuckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show MoreActivated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show MoreIn this paper, the static analysis for finding the best location of boxes inside the composite wing-box structure has been performed. A software ANSYS (ver.11) was used to analyses the Aluminum wing to find the maximum stresses reached in. These results are used as a base for the composite wingbox to find the numbers of layers and location of the box beam and its dimensions so that the composite wingbox may carry the same loading conditions in the Aluminum wing. Analysis showed that a composite wingbox having two boxes is better than the single or triple boxes wing based on stress to weight ratio. Mass saving of (40%) had been achieved when composite wing-box is used instead of Aluminum wing.
Fine aggregates used for concrete works in Sulaymaniyah city frequently fail to meet the standard requirements for gradation and fineness modulus in cement concrete. This paper aims to critically evaluate gradation, fineness modulus, and clay contents of various natural sands produced and used for concrete work in the region. Sixteen field sand samples were collected from various sites in Darbandikhan (5 samples), Qalat Dizah (5 samples), Koysinjaq (5 samples), and Piramagroon (1 sample) confirming to ASTM D75. The field samples were parted into test specimens based on ASTM C702. Then, sieve analysis was carried out on the oven-dry test specimens in compliance with ASTM C136. The test results of fine aggregates wer
... Show MoreAAA AL-NUAIMY, MH ABDLL-ABASS, Iraqi Journal of Agricultural Sciences, 2007
This paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm
... Show More