Preferred Language
Articles
/
kxeBNY8BVTCNdQwCVGGq
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review
...Show More Authors

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In this article, a summary of heuristic and meta-heuristic methods for solving the task scheduling optimization in cloud-fog systems is presented. The cost and time aware scheduling methods for both bag of tasks and workflow tasks are reviewed, discussed, and analyzed thoroughly to provide a clear vision for the readers in order to select the proper methods which fulfill their needs.

Crossref
View Publication
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Surfactant Cloud Point Extraction as a Procedure of Preconcentrating for Metoclopramide Determination Using Spectro Analytical Technique
...Show More Authors

In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Sep 29 2021
Journal Name
Molecules
A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling
...Show More Authors

The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this tech

... Show More
View Publication
Scopus (95)
Crossref (93)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Generating a Strong Key for a Stream Cipher Systems Based on Permutation Networks
...Show More Authors

The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 18 2018
Journal Name
Lambert Academic Publishing
Mathematical Models For Contamination Soil
...Show More Authors

ENGLISH

Publication Date
Wed Mar 05 2025
Journal Name
Lecture Notes In Networks And Systems
Leveraging AI for Disaster Management: A Comprehensive Review of Applications and Challenges
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Sun Jan 08 2023
Journal Name
Journal Of Planner And Development
Statistical Evaluation of the Planning Process and Scheduling Management for Irrigation and Drainage Projects in the Republic of Iraq
...Show More Authors

The Research aims to investigate into reality in terms of planning and scheduling management process for sake the implementation and maintenance of irrigation and drainage projects in the Republic of Iraq, with an indication of the most important obstacles that impede the planning and scheduling management process for these projects and ways of addressing them and minimizing their effects.                                                  For the purpose of achieving the goal of the research, a sci

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Political Sciences Journal
Fiscal federalism: a study of the concept and models
...Show More Authors

يمثل الأخذ بالنظام الفيدرالي أطاراً تنظيمياً لشكل الدولة و مرحلة تحول مهمة في بنية الدولة العامة في مختلف مجالاتها، فالانتقال من المركزية في أدارة الشؤون العامة للدولة الى النمط الفيدرالي يمثل تحولا بنيوياً وسيكولوجياً ،حيث يكون هنالك توزيع مكاني - عمودي للسلطة والثروة بين الوحدات المكونة للدولة بشكل يختلف كليا عن الحالة المركزية، ونجد صور تنظيمية عديدة تتأسس ضمن اطار الفيدرالية العام ،

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Applied Energy
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is

... Show More
View Publication
Scopus (20)
Crossref (14)
Scopus Clarivate Crossref