Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face image datasets, ORL and FEI. Different state-of-the-art face recognition methods were compared with the proposed method in order to evaluate its accuracy. We demonstrate that the proposed method achieves the highest recognition rate in different considered scenarios. Based on the obtained results, it can be seen that the proposed method is robust against noise and significantly outperforms previous approaches in terms of speed.
This study deals with the orthographic processing ability of homophones
which can account for variance in word recognition and production skills due to
phonological processing. The study aims at: A)Investigating whether the students
can recognize correct usage and spelling comprehension of different homophones
by using appropriate word that overlapped in both phonology and orthography.
B)Assessing spelling production word association to the written form of the
homophone in the sentence comprehension task. To achieve these aims, two tests
have been conducted and distributed on 50 students at first stage at the College of
Education(Ibn-Rushd) for the academic year 2010-2011. The two tests are exposed
to a jury of
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreIn the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2,
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreMost of us are tired of the circumstances that surround us because of their deficiency, deprivation, and sullenness, even though troubles and pains are the soil in which the seeds of strong personality sprout.
The content of the research is summed up in the fact that there is no need to frown, so let our face be free, and our word good and tolerant, so that we can be the most loving people of those who give them, and the Messenger of God (may God’s prayers and peace be upon him and his family) was known to be the heaviest concerns of people, but he was most smiling of people, by smiling, we buy lives, so we should get used to it, because that gives us hope and finds the world in our hands, an
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe discus throwing event is one of the complex events in athletics, and it is characterized by a performance method that depends on the principle of mechanical moments and requires high explosive capabilities of the thrower in addition to some physical specifications,which depends effectively and effectively on the biomechanical aspects in generating large moments during rotation. The importance of the research is highlighted by the interest in athletics, especially the effectiveness of the discus throw and the continuation of its development process, the importance of kinetic analysis in revealing the most important weaknesses and strengths of shooters, and the importance of explosive power And the moments generated in the rotation of the
... Show More