Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-hop basis based on the maximum distance toward the destination from the sender and sufficient communication lifetime, which guarantee the completion of the data transmission process. Moreover, communication overhead is minimized by finding the next hop and forwarding the packet directly to it without the need to discover the whole route first. A comparison is performed between MDORA and ad hoc on-demand distance vector (AODV) protocol in terms of throughput, packet delivery ratio, delay, and communication overhead. The outcome of the proposed algorithm is better than that of AODV.
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
A field experiment was conducted during winter season of 2021 at a research station of college of agricultural engineering sciences, university of Baghdad to determine the response of active fertility percentage and seed yield and its components of faba bean (Vicia faba L. cv. Aguadulce) to distance between plants and spraying of nano and traditional boron. A Randomized Complete Block Design according to split-plots arrangement was used at three replicates. The main plots were three distances between plants (25, 35 and 45 cm), while the sub plots including spraying of distilled water only (control treatment), spraying of boron at a 100 mg L-1 and spraying of nano boron at two concentrations (1
... Show MoreObjectives: The study aimed to clarify the role of Al-Sayyid Al-Ajall and his family in the service of the Mongol Empire. They worked to develop its administrative and military institutions, benefiting from their extensive experience in administration, politics, economics, and urban affairs. Due to their capabilities, they received the patronage of Genghis Khan and subsequent generations, earning the confidence of the ruling Mongol authority. As a result, they were granted significant powers within the state. Methods: The study relied on the analytical method to analyze historical texts, compare them with others, and discuss them accurately. Results: The study yielded several results, including the minister's keen interes
... Show MoreThe main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MoreAbstract
This study aims to identify the extent to which the criteria of the American Council for Teaching Foreign Languages (ACTFL) are included in the English language books for the fifth and sixth graders. To achieve the objective of the study, a content analysis card was prepared, where the classification of language proficiencies was divided into five main levels (beginner, intermediate, advanced, superior, and distinguished) of the four language skills (listening, speaking, reading, and writing), The content analysis card consisted of (89) indicators distributed at the four levels of language skills as follows: Listening (17), speaking (33), reading (15), and writing (26). The study sample consisted of Engl
... Show MoreAtenolol was used with ammonium molybdate to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and ammonium molybdate in an aqueous medium to obtain a dark brown precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.1-3.5 mmol/L for cell A and 0.3-3.5 mmol/L for cell B, and LOD 133.1680 ng/100 µL and 532.6720 ng/100 µL for cell A and cell B respectively with correlation coefficient (r) 0.9910 for cell A and 0.9901 for cell B, RSD% was lower than 1%, (n=8) for the determination of ate
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More