Preferred Language
Articles
/
khjzrZQBVTCNdQwCeB6e
Mesoporous Ag@WO3 core–shell, an investigation at different concentrated environment employing laser ablation in liquid
...Show More Authors
Abstract<p>In this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO<sub>3</sub> NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO<sub>3</sub> core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon resonance of Ag NPs and WO<sub>3</sub> NPs, respectively. The absorbance values of the Ag–WO<sub>3</sub> core–shell NPs increased as the core concentrations rose, while the band gap decreased by 2.73–2.5 eV, The (PL) results exhibited prominent peaks with a central wavelength of 456, 458, 458, 464, and 466 nm. Additionally, the PL intensity of the Ag–WO<sub>3</sub>-NP samples increased proportionally with the concentration of the core. Furthermore, the redshift seen at the peak of the PL emission band may be attributed to the quantum confinement effect. EDX analysis can verify the creation process of the Ag–WO<sub>3</sub> core–shell nanostructure. XRD analysis confirms the presence of Ag and WO<sub>3</sub> (NPs). The TEM images provided a good visualization of the core-spherical shell structure of the Ag–WO<sub>3</sub> core–shell NPs. The average size of the particles ranged from 30.5 to 89 (nm). The electrical characteristics showed an increase in electrical conductivity from (5.89 × 10<sup>−4</sup>) (Ω cm)<sup>−1</sup> to (9.91 × 10<sup>−4</sup>) (Ω cm)<sup>−1</sup>, with a drop in average activation energy values of (0.155 eV) and (0.084 eV) at a concentration of 1.6 μg/mL of silver.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Porous silicon prepared by photo electrochemical etching assisted by laser
...Show More Authors

Porous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 15 2020
Journal Name
Iraqi Journal Of Laser
Hole Drilling of High Density Polyethylene using Nd:YAG Pulsed Laser
...Show More Authors

This paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process

View Publication Preview PDF
Publication Date
Wed Jan 22 2020
Journal Name
Iraqi Journal Of Laser
Stress Urinary Incontinence Treatment Using Vaginal Fractional CO2 Laser (10600nm)
...Show More Authors

Stress urinary incontinence (SUI) is involuntary urine leakage during activities that increase abdominal pressure such as coughing, sneezing and lifting of heavy weights. This is a very common disorder among women with history of multiple vaginal deliveries with an obstructed labor. SUI is considered one of the most distressing problems, especially for younger women, with severe quality of life implications, it caused by the loss of urethral support, usually as a consequence of the supporting structural muscles in the pelvis.

Objective: To prove and demonstrate the effect of a fractional CO2 micro-ablative laser (10600nm) in intra vaginal therapy for treating SUI and achieve a clinical improvement of t

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 23 2020
Journal Name
Iraqi Journal Of Laser
Spider Veins Treatment using 1064 nm Long-Pulse Nd:YAG Laser
...Show More Authors

spider veins are clusters of Ectatic venules & are common finding on the lower limbs generally believed to be caused by multiple factors, including genetic predisposition, hormonal factors, gravity, occupation, pregnancy, becoming increasingly apparent with age, and trauma. Therapeutic options include sclerotherapy, surgical procedures, and treatment with different laser systems.

 Objectives: The purpose of the study was to evaluate the efficacy and safety of long pulsed (Nd:YAG) laser emitting at 1064nm in the treatment of spider veins.

Patients, Materials and Methods: This prospective study was done in the laser medicine research clinics of the Institute of las

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 14 2015
Journal Name
Journal Of Optoelectronics And Photonics (jop)
Preparation and Characterization of AL2O3 Nanostructures by Pulsed – Laser Deposition
...Show More Authors

Publication Date
Thu Apr 18 2024
Journal Name
Geomatics And Environmental Engineering
Error Analysis of Stonex X300 Laser Scanner Close-range Measurements
...Show More Authors

This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 12 2003
Journal Name
Iraqi Journal Of Laser
Carbon Dioxide Laser Treatment of Viral Warts: A New Approach
...Show More Authors

Verrucae vulgares are commonly encountered. The present work is designed in an attempt to build a systematic procedure for treating warts by carbon dioxide laser regarding dose parameters, application parameters and laser safety.
Patients and Methods: The study done in the department of dermatology in Al-Najaf Teaching Hospital in Najaf, Iraq. Forty-two patients completed the study and follow up period for 3 months. Recalcitrant and extensive warts were selected to enter the study. Carbon dioxide laser in a continuous mode, in non-contact application, with 1 mm spot size was used. The patients were divided into two groups. The first group of patients consisted of 60 lesions divided to 6 equal groups, in whom we use different outputs a

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Nanosecond Nd: YAG Laser Surface Cleaning of Metals and Marbles
...Show More Authors

Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Influence of Laser Irradiation Times on Properties of Porous Silicon
...Show More Authors

Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.

View Publication Preview PDF
Crossref
Publication Date
Tue Nov 20 2012
Journal Name
J. Of University Of Anbar For Pure Science
Laser Processing For Nanoscale Size Quantum Wires of AlGaAs/GaAs
...Show More Authors

In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.