Media theories and studies have provided many diligences on the concept of social media and the circle of influence, including the theory of social marketing which deals with how to promote ideas espoused by the elite in a society to become a recognized social value. The emergence of social networks provided a revolutionary breakthrough, taking the media to unprecedented horizons; and giving its users great opportunities to influence and move across borders without restrictions and censorship, except in a relatively limited manner. So, the emergence of social media has created channels of live broadcasting from its audience in a method of development that changes the essence of the known communication theories; and stops the monopoly of the media message industry to convey it to a broader and more comprehensive range, with an influential and interactive capacity that communication experts have not imagined. Therefore, the reform and change movements in our Arab and Islamic world are invited, today, to take advantage of the internet revolution to the maximum extent in the fields of organization, administration, communication, media, political struggle and other aspects of life. Can we understand the historical significance of the internet revolution? Referring to the international experiences in the cases of “Tunisia and Egypt”, the media, according to the social marketing theory, raises awareness among the public - through media campaigns that aim to intensify knowledge to modify behavior by increasing the information sent - to influence the targeted sectors of the public. The media, as well, supports media messages by personal contacts; and continues to present messages in the means of communication. Then, the public becomes interested in the formation of a mental image through information and ideas. Right here, the contactor seeks to form that mental image to link the subject with the interests of the public and its aspirations. In a later step, the organizer begins designing new messages to reach more specific behavioral outcomes as an instance making a decision. Then, it comes the stage of creating specific events to ensure continued interest in a topic, and cover those specific events on the level of media and masses. Afterwards, it is time to urge the public to take an exact action expressing the idea by advocating the adoption of ideas in which communication messages are focused. As a result, who makes the change? The question that must be answered after the repetition of the Tunisian scene in Egypt and the expansion of the “Atlas of Arab Popular Uprisings” is: Does the media play a supporting role in social change by strengthening the public sphere?
The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
Uromodulin is the most abundant protein ordinary excreted in urine which could be used as a biomarker to diagnose kidney diseases. However, evidence suggests that it regulates salt transport, protects against urinary tract infection and kidney stones, and has a role in kidney damage and innate immunity. This study aimed to understand the association of uromodulin gene rs13332878 with chronic kidney disease. More than 100 people were selected for the study and the samples collected from the under study subjects were divided into two groups. 70 chosen subjects were under the dialysis with kidney failure, and aged between 18-88 years. The second group included 30 samples from healthy individuals, used as control. One of t
... Show MoreThe most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method).
In this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density of the energy states in variation zones (densities of the energ
... Show MoreThis paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.
The use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2
... Show MoreIn this paper, we introduce new conditions to prove that the existence and boundedness of the solution by convergent sequences and convergent series. The theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed point theorem are used to get some sufficient conditions for the existence of solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory property for all solutions in this class of equations. An illustrative example is included as an application to the main results.
The influence of different types of plasmonic gold (Au-NPs) and silver (Ag-NPs) nanoparticles as well as aging on the performance of Surface-Enhanced Raman Scattering (SERS) sensors were studied. The average diameters of Au-NPs and Ag-NPs were about 23 nm and 15 nm, respectively, with a number of laser pulses of about 200. plasmonic nanoparticles were synthesized by laser ablation process in distilled water using a fixed energy laser fluence of about 14 J/cm2 of Nd-YAG laser, with 1060 nm wavelength and 1 Hz pulse repetition rate. The SERS sensor was carried out by quick drop casting process of plasmonicplasmonic nanoparticles on glass substrates. The morphological aspects and the performance of SERS sensors were investigated
... Show MoreThe main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones